
SWI-Prolog version 7 extensions

Jan Wielemaker

Web and Media group, VU University Amsterdam,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands,

J.Wielemaker@vu.nl

Abstract. SWI-Prolog version 7 extends the Prolog language as a general pur-
pose programming language that can be used as ‘glue’ between components writ-
ten in different languages. Taking this role rather than that of a domain specific
language (DSL) inside other IT components has always been the design objective
of SWI-Prolog as illustrated by XPCE (its object oriented communication to the
OS and graphics), the HTTP server library and the many interfaces to external
systems and file formats. In recent years, we started extending the language it-
self, notably to accommodate expressing syntactic constructs of other languages
such a HTML and JavaScript. This resulted in an extended notion of operators
and quasi quotations. SWI-Prolog version 7 takes this one step further by extend-
ing the primitive data types of Prolog. This article describes and motivates these
extensions.

1 Introduction

Prolog is often considered a DSL, a Domain Specific Language. This puts the language
in a position similar to e.g., SQL, acting as a component in a larger application which
takes care of most of the application and notably the interfaces to the outside world
(be it a graphical interface targeting at humans or a machine-to-machine interface).
This point of view is illustrated by vendors selling their system as e.g., Prolog + Logic
Server (Amzi!), the interest in Prolog-in-some-language implementations as well as by
the many questions about embedding interfaces that appear on mailing lists and forums
such as stackoverflow.1

SWI-Prolog always had the opposite viewpoint, proposing Prolog as a ‘glue’ (or
scripting language) suitable for the overall implementation of applications. As a conse-
quence, SWI-Prolog has always provided extensive libraries to communicate to other
IT infrastructure, such as graphics (XPCE), databases, networking, programming lan-
guages and document formats. We believe this is a productive approach for the follow-
ing reasons:

– Many external entities can easily be wrapped in a Prolog API that provides a neat
relational query interface.

– Given a uniform relational model to access the world makes reasoning about this
world simple. Unlike classical relational query languages such as SQL though, Pro-
log rules can be composed from more elementary rules.

1 http://stackoverflow.com/

– Prolog is one of the few languages that can integrate application logic without suf-
fering from the Object-Relational impedance mismatch.2 [5]

– Prolog naturally blends with constraint systems, either written in Prolog or external
ones.

– Many applications have lots of little bits of logic that is way more concisely and
readably expressed in terms of Prolog rules than in imperative if-then-else rules.

– Prolog’s ability to write application-specific DSLs is highly valuable for developing
larger applications.

– Prolog’s reflective capabilities simplify many application specific rewriting, valida-
tion and optimisation requirements.

– Prolog’s dynamic compilation provides a productive development environment.
– Prolog’s simple execution order allows for writing simple sequences of actions.

For a long time, we have facilitated this architecture within the limitations of clas-
sical Prolog, although we lifted several limits that are common to Prolog implemen-
tations. For example, SWI-Prolog offers atoms that can hold arbitrary long Unicode
strings, including the code point ‘0’, which allows applications to represent text as well
as ‘binary blobs’ as atoms. Atom garbage collections ensures that such applications
can process unbounded amounts of data without running out of memory. It offers un-
bounded arity of compound terms to accommodate arrays and it offers multi-threading
to allow for operation in threaded server environments. SWI-Prolog’s support of data
types and syntax was considered satisfactory for application development. Over the past
(say) five years, our opinion started to shift for the following reasons:

– With the uptake of SWI-Prolog as a web-server platform, more languages came into
the picture, notably HTML, JavaScript and JSON. While HTML can be represented
relatively straightforward by Prolog terms, this is not feasible for JavaScript. Rep-
resenting JSON requires wrapping terms in compounds to achieve an unambiguous
representation. For example, JavaScript null is represented as @(null) to avoid
confusing it with the string "null". SWI-Prolog version 7 allows for an alter-
native JSON representation where Prolog strings are mapped to JSON strings and
atoms are used for the JSON constants null, true and false.

– The primary application domain at SWI-Prolog’s home base, the computer science
institute at the VU University Amsterdam, in particular the ‘web and media’ and
‘knowledge representation and reasoning’ groups, is RDF and web applications.
This domain fits naturally with Prolog and especially with SWI-Prolog. Neverthe-
less, we experienced great difficulty motivating our PhD students to try this plat-
form, often because it looked too ‘alien’ to them.

In [7] we proposed extensions to the Prolog syntax to accommodate languages such
as JavaScript and R using ‘extended operators’, which allows using {. . .} and [. . .]
as operators. In [8] we brought the notion of quasi quotations to Prolog, providing an
elegant way for dealing with external languages such as HTML, JavaScript, SQL and
SPARQL as well as long strings. In this article we concentrate on extending Prolog’s
data types with two goals in mind:

2 http://en.wikipedia.org/wiki/Object-relational_impedance_
mismatch

– Facilitate the interaction with other IT systems by incorporating their data types. In
particular, we wish to represent data from today’s dynamic data exchange languages
such as JSON naturally and unambiguously.

– Provide access to structured data elements using widely accepted (functional) syn-
tax.

This paper is organised as follows. In section 2 we identify the missing pieces. In
section 3 we describe how these are realised in SWI-Prolog version 7, followed by an
evaluation of the impact on compatibility, a preliminary evaluation of the new features,
and our conclusions.

2 The missing pieces of the puzzle

2.1 Representing text

ISO Prolog defines two solutions for representing text: atoms (e.g., ’ab’) and lists of
characters, where the characters are either represented as code points, i.e., integers,
such as [97,98] or atoms of one character ([a,b]). Representing text using atoms is often
considered inadequate for several reasons:

– It hides the conceptual difference between text and program symbols. Where con-
tent of text often matters because it is used in I/O, program symbols are merely
identifiers that match with the same symbol elsewhere in the program. Program
symbols can often be consistently replaced, for example to obfuscate or compact a
program.

– Atoms are globally unique identifiers. They are stored in a shared table. Volatile
strings represented as atoms come at a significant price due to the required cooper-
ation between threads for creating atoms. Reclaiming temporary atoms using Atom
garbage collection is a costly process that requires significant synchronisation.

– Many Prolog systems (not SWI-Prolog) put severe restrictions on the length of
atoms, the characters that can be used in atoms or the maximum number of atoms.

Representing text as a list of character codes or 1-character atoms also comes at a price:

– It is not possible to distinguish (at run time) a list of integers or atoms from a
string. Sometimes this information can be derived from (implicit) typing. In other
cases the list must be embedded in a compound term to distinguish the two types.
For example, s("hello world") could be used to indicate that we are dealing
with a string.
Lacking run time information, debuggers and the top level can only use heuristics to
decide whether to print a list of integers as such or as a string (see portray text/1).
While experienced Prolog programmers have learned to cope with this, we still
consider this an unfortunate situation.

– Lists are expensive structures, taking 2 cells per character (3 for SWI-Prolog, which
threads lists as arbitrary compound terms, represented as the ‘functor’ (./2) and an
array of arguments). This stresses memory consumption on the stacks while push-
ing them on the stack and dealing with them during garbage collection is unneces-
sarily expensive.

2.2 Representing structured data

Structured data is represented in Prolog using compound terms, which identify the ar-
guments by position. While that is perfectly natural for e.g., point(X,Y), it becomes
cumbersome if there is no (low) natural number of arguments or if there is no com-
monly accepted order of the arguments. The Prolog community has invented many
workarounds for this problem:

– Use lists of Name=Value or Name(Value) terms. While readable, this representation
wastes space while accessing elements is inefficient.

– Use compound terms and some form of symbolic access. Alternatives
seen here are SWI-Prolog’s library(record), which generates access pred-
icates from a declaration, the Ciao solution [4], which provides ac-
cess using functional notation using Term$field, the ECLiPSe solution
mapping terms name{key1:value1,key2:value2,...} to a term
name(value2,_,value1,_,...) using expansion called by read term/3
based on a ‘struct’ declaration.3

– Using binary trees (e.g., the classical DEC10 library(assoc)). This provides fast
access, but uses a lot of space while the structures are hard to write and read.

2.3 Ambiguous data

We have already seen one example of ambiguous data: the list [97,98] can be the string
"ab" or a list with two integers. Using characters does not solve this. Defining a string
as a list of elements of a new type ‘character’ still does not help as it fails to distinguish
the empty list ([]) from the empty string (""). Normally, ambiguity is resolved in
one of two ways: the data is passed between predicates that interpret the ambiguous
terms in a predefined way (e.g., atom_codes(A,[]) interprets the [] as an empty
string) or the data is wrapped in a compound, e.g., s([97,98]). The first requires
an interpretation context, which may not be present. The latter (known as non-defaulty
representation) is well suited for internal processing, but hard to read and write and
requires removing and wrapping the data frequently.

3 SWI-Prolog 7

With SWI-Prolog version 7, we decided to solve the above problems, accepting that
version 7 would not be completely backward compatible with version 6 and the ISO
standard. As we will see in section 4 though, the compatibility of SWI-Prolog version 7
to its predecessors can be considered fair. Most of the changes are also available in
some other Prolog.

3 http://www.eclipseclp.org/doc/userman/umsroot022.html

3.1 Double quoted strings

Strings, and their syntax have been under heavy debate in the Prolog community, but
did not make it into the ISO standard. It is out of the scope of this paper to provide
a historical overview of this debate. Richard O’Keefe changed his opinion on strings
during the debate on the SWI-Prolog mailinglist. His current opinion can be found in
“An Elementary Prolog Library”, section 104

SWI-Prolog 7 reads "..." as an object of type string. Strings are atomic objects
that are distinct from atoms. They can represent arbitrary long sequences of Unicode
text. Unlike atoms, they are not combined in a central table, live on the term-stack
(global stack or heap) and their life time is the same as for compound terms (i.e., they
are discarded on backtracking or garbage collection).

Strings as a distinct data type are present in various Prolog systems, e.g., SWI-
Prolog, Amzi! and YAP. ECLiPSe [6] and hProlog5 are the only system we are aware of
that uses the common double-quoted syntax for strings. The set of predicates operating
on strings has been synchronised with ECLiPSe.

3.2 Modified representation of lists

Representing lists the conventional way using ./2 as cons-cell and the atom ’[]’ as
list terminator both (independently) poses difficulties, while these difficulties can be
avoided easily. These difficulties are:

– Using ./2 prevents using this commonly used symbol as an operator because a.B
cannot be distinguished from [a|B]. Changing the functor used for lists has little
impact on compatibility because it is (almost) always written as [. . .]. It does imply
that we can use this symbol to introduce widely used syntax to Prolog, as described
in section 3.3.

– Using ’[]’ as list terminator prevents dynamic distinction between atoms and
lists. As a result, we cannot use polymorphism that involve both atoms and lists.
For example, we cannot use multi lists (arbitrary deeply nested lists) of atoms.
Multi lists of atoms are in some situations a good representation of a flat list that
is assembled from sub sequences. The alternative, using difference lists or Definite
Clause Grammars (DCGs) is often less natural and sometimes demands for ‘open-
ing’ proper lists (i.e., copying the list while replacing the terminating empty list
with a variable) that have to be added to the sequence. The ambiguity of atom and
list is particularly painful when mapping external data representations that do not
suffer from this ambiguity.
At the same time, avoiding ’[]’ as a list terminator avoids the ambiguity of text
representations described in section 2.3, i.e., ’[]’ unambiguously represents two
characters and [] unambiguously represents the empty string.

4 http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm#strs
5 http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW366.abs.
html

We changed the cons-cell functor name from ’.’ to ’[|]’, inspired by Mer-
cury.6 We turned the empty list ([]) into a new data type, i.e., [] has the properties
demonstrated by the queries below. This extension is also part of CxProlog using
--flags nil is special=true.7

?- atom([]). % [] is not an atom
false.
?- atomic([]). % [] is atomic
true.
?- is_list(’[]’). % ’[]’ is not a list
false.
?- [] == ’[]’. % our goal
false.
?- [] == []. % obviously
true.
?- [] == [/*empty list*/]. % also
true.
?- ’[]’ == ’[]’. % two different atoms
false.

3.3 Introducing dicts: named key-value associations

Dicts are a new data type in SWI-Prolog version 7, which represents a key-value asso-
ciation. The keys in a dict are unique and are either atoms or integers. Dictionaries are
represented by a canonical term, which implies that two dicts that represent the same
set of key-value associations compare equal using ==/2. Dicts are natively supported by
read/1 and write/1. The basic syntax of a dict is described below. Similar to compound
terms, there cannot be a space between the Tag and the {. . .} term. The Tag is either an
atom or a variable, notably {. . . } is used as ‘anonymous’ dict.

Tag{Key1:Value1, Key2:Value2, . . .}

Below are some examples, where the second example illustrates that the order is not
maintained and the third illustrates an anonymous dict.

?- A = point{x:1, y:2}.
A = point{x:1, y:2}.

?- A = point{y:2, x:1}.
A = point{x:1, y:2}.

?- A = _{first_name:"Mel", last_name:"Smith"}.
A = _G1476{first_name:"Mel", last_name:"Smith"}.

6 http://www.mercurylang.org/information/doc-latest/transition_
guide.pdf

7 http://ctp.di.fct.unl.pt/˜amd/cxprolog/MANUAL.txt

Note that our dict notation looks similar, but is fundamentally different from ECLiPSe
structs. The ECLiPSe struct notation {. . . } is a sparse notation for a declared normal
compound term. The ECLiPSe notation can only be used for input, it is not possible
to dynamically add new keys and the resulting term can be used anywhere where a
compound term is allowed. For example, ECLiPSe allows us to write predicates with
named arguments like this:

person{last_name:"Smith"}.

In contrast, our dicts are dynamic, but can only appear as a data term, i.e., not as the
head of a predicate. This allows for using them to represent dynamic data from e.g.,
JSON objects or a set of XML attributes.

Dicts also differ from LIFE PSI-Terms [1], which are basically feature vectors that
can unify as long as there are no conflicting key-value pairs in both PSI terms. Dicts
are ground if all values are ground and it is thus impossible to add keys using uni-
fication. PSI terms can be simulated by associating a dict to an attributed variable.
The code to unify two dicts with non-conflicting key-value pairs is given below, where
>:</2 succeeds after all values associated with common keys are unified. For exam-
ple, T{a:1,b:B} >:< d{a:A,b:2,c:C} succeeds with T=d, B=2, leaving C un-
bound.

psi_unify(Dict1, Dict2, Dict) :-
Dict1 >:< Dict2,
put_dict(Dict1, Dict2, Dict).

Functional notation on dicts Dicts aim first of all at the representation of dy-
namic structured data. As they are similar to the traditional library(assoc), a predi-
cate get dict(+Key,+Dict,-Value) is obvious. However, code processing dicts will
become long sequences of get dict/3 and put dict/4 calls in which the actual logic
is buried. This at least is the response we get from users using library(record) and
library(assoc) and is also illustrated by the aforementioned solutions in Ciao and
ECLiPSe. We believe that a functional notation is the most natural way out of this.

The previously described replacement of ’.’8 with ’[|]’ as list cons-term provides
the ideal way out of this because (1), the a.b notation is widely used for this purpose and
(2) ./2 terms are extremely rare in Prolog. Therefore, SWI-Prolog transforms ./2 terms
appearing in goals into a sequence of calls to ./3,9 followed by the original goal. Below
are two examples, where the left code is the source and the right is the transformed
version.

8 Note that ’.’ and a plain . are the same, also in SWI-Prolog version 7. We use ’.’ in running text
to avoid confusion with the end of a sentence.

9 We called the helper predicate to evaluate ./2 terms ./3 to make the link immediate. It could
also have been named e.g., evaluate/3.

.(D, last_name, LN),
writeln(D.last_name) writeln(LN)

last_name(D, D.last_name). last_name(D, LN) :-
.(D, last_name, LN).

Functions on dicts In the previous section we described the functional notation
used to access keys on dicts. In addition to that, we allow for user defined func-
tions on dicts. Such functions are invoked using the notation Dict.Compound, e.g.,
Point.offset(X,Y) may evaluate to a new Point dict at offset (X,Y) from the orig-
inal. User defined functions are realised by means of the dict tag, which associates the
dict with a Prolog module (inspired by attribute names of attributed variables). The
offset function is defined as:

:- module(point, []).

Pt.offset(OX,OY) := point{x:X,y:Y} :-
X is Pt.x + OX,
Y is Pt.y + OY.

The above function definition is rewritten using term expansion rules into
the code below. The predicate ./3, handling functional notation based on
./2, translates Dict.Compound into call(Compound, Dict, Result). For ex-
ample, the expression point{x:1,y:2}.offset(2,4) is translated into
call(offset(2,4),point{x:1,y:2},Result), which in term calls the
predicate below.

offset(OX, OY, Pt, point{x:X, y:Y}) :-
’.’(Pt, x, X0),
X is X0+OX,
’.’(Pt, y, Y0),
Y is Y0+OY.

As Dict.Atom accesses a key and Dict.Compound calls a user-defined function, we have
no way to express functions without arguments. In [7] we already concluded that name()
is a valuable syntactic building block for DSL construction and therefore we decided to
add support for zero-argument compound terms, such as name(). Zero-argument com-
pounds are supported by the following predicates:

compound name arity(Compound, Name, Arity)
compound name arguments(Compound, Name, Arguments)

These predicates operate on compounds with any number of arguments, including
zero.

functor(Callable, Name, Arity)
Callable =.. List

These predicates operate on atoms or compounds. They raise an error if the first
argument is a zero-arity compound.

4 Compatibility

SWI-Prolog version 7 is not fully backward compatible with older versions and drifts
further away from the ISO standard. We believe that a programming language must
evolve over time to match changing demands and expectations. In other words, there
should be a balance between compatibility with older versions of the language and ful-
filling evolving demands and expectations. As far as we understand, the ISO standard-
isation process only allows for strict extensions of a language, guaranteeing full back-
ward compatibility with ISO standard. The ISO model allows for none of the described
changes because all of them have at least corner cases where they break compatibility.
Such a restrictive view does not allow for gradual language evolution and forces a rev-
olution, replacing the language with a new one. We believe that the evolutionary route
is more promising.

Nevertheless, SWI-Prolog version 7 introduces significant changes. We have evalu-
ated the practical consequences of these changes as soon as we had a prototype imple-
mentation by porting our locally developed software as well as large systems for which
we have the source code. A particularly interesting code base is Alpino [3], a parser for
the Dutch language. Alpino has been developed for over 15 years, counts approximately
500K lines of Prolog code and contains many double quoted strings. Porting took two
days, including implementing list strings/0 described below.

We received several evaluations from users about porting their program from ver-
sion 6 to version 7, two of which concern code basis between 500K and 1M lines. This
section summarise our key findings.

Double quoted strings This is the main source of incompatibilities. However, migrat-
ing programs proves to be fairly easy. First, note that string literals in DCGs can be
mapped to lists of character codes by the DCG compiler, which implies that code such
as det --> "the" remains valid. The double-quoted notation is commonly used to
represent e.g., the format argument for format/3. This is, also conceptually, correct us-
age of strings and does not require any modification. We developed a program analyzer
(list strings/0) which examines the compiled program for instances of the new string
objects. The analyzer has a user extensible list of predicates that accept string argu-
ments, which causes a goal format("Hello World˜n") to be considered safe. In
practise, this reveals compatibility issues accurately. There are three syntactic measures
to adapt your code:

– Rewrite the code. For example, change [X] = "a" into X = 0’a.
– If a particular module relies heavily on representing strings as lists of character

code, consider adding the following directive to the module. Note that this flag
only applies to the module in which it appears.

:- set_prolog_flag(double_quotes, codes).

– Use a back quoted string (e.g., ‘text‘). Note that using ‘text‘ ties the code to
SWI-Prolog version 7. There is no portable syntax that produces a list of characters.
Such a list can be obtained using portable code using one of the constructs below.

• phrase("text", List)
• atom_codes("text", List)

Using the new [] as list terminator This change has very few consequences to Prolog
programs. We encountered four issues, caused by calls such as atom concat([], . . .).
Typically, these result from using [] as ‘nil’ or ‘null’, i.e., no value, but using them as a
real value.

Using [|] as cons-cell We encountered a few cases where ./2 terms were handled
explicitly or where the functor-name of a term was requested and . was expected. We
also found lists written as e1.e2.e3.[] and [H|T] written as H.T. Such problems can
typically be found by examining the compiled code for ./2 terms.

Together with [], the only major problem encountered is JPL, the SWI-Prolog Java
interface. This interface represents Prolog terms as Java objects, assuming there are
variables, atoms, numbers and compound terms. I.e., lists are treated as ./2 terms end-
ing in the atom ’[]’. We think JPL should be extended with a list representation. This
will also cure the frequent stack overflows caused by long lists represented as deeply
nested ./2 terms that are traversed by a recursive Java method.

Dicts, functions and zero-arity compounds The dict syntax infrequently clashes with
a prefix operator followed by {. . .}. Cases we found include the use of @{null} to
represent ‘null’ values, ::{...} used (rarely) in Logtalk and \+{...} which can
appear in DCGs to express negation of a native Prolog goal. The ./2 functional no-
tation causes no issues after ./2-terms that should have used list notation were fixed.
The introduction of zero-arity compounds has no consequences for applications that
do not use these terms. The fact that such terms can exist exposed many issues in the
development tools.

5 Evaluation

The discussions on SWI-Prolog version 7 took place mostly in October to December
2013. The implementation of the above is now considered almost stable. Migrating
towards effective and consistent use of these new features is not easy because most ex-
isting code and libraries use atoms to represent text and one of the described alternatives
to represent key-value sets.

Our evaluation consists of two parts. First, we investigate uptake inside SWI-
Prolog’s libraries and by users. The second part is a performance analysis.

Dicts Currently, dicts can be used in the following areas:

– As an alternative option representation. All built-in predicates as well as li-
brary(option) accept dicts as an alternative specification for options.

– The JSON support library provides alternative predicates to parse input into JSON
represented using dicts. The JSON write predicates accept both the old representa-
tion and the new dict representation.

We have been using dicts internally for new code. The mailing list had a brief
discussion on dicts.10 There two contributed SWI-Prolog add-ons11 that target lists:
dict schema and sort dict address type checking and sorting lists of dictionaries by key.
Other remarks:

– Michael Hendricks: “We’re using V7. Most of our new code uses dicts extensively.
I’ve found them especially compelling for working with JSON and for replacing
option lists.”

– Wouter Beek: Uses dictionaries for WebQR12 for dealing with JSON messages.
Claims that the code becomes more homogeneous, readable and shorter. Also uses
the real add-on, claiming that the dot-notation, functions without argument and
double quoted strings gives the mapping a more ‘native’ flavour and makes the
code more readable.

Strings Many applications would both conceptually and performance-wise benefit from
using strings. As long as most libraries return their textual data using atoms, we cannot
expect serious uptake. Strings (and zero-argument compounds) are currently used by
the R-interface package real [2].

5.1 Dict performance

The dict representation uses exactly twice the memory of a compound term, given the
current implementation which uses an array of consecutive (key,value) pairs sorted by
the key. Future implementation may share the key locations between dicts with the same
keys. We compared the performance using a tight loop. The full implementation using
functional notation is given in figure 1.

We give only the recursive clause for the other test cases in figure 2. Thus, t0/2
provides the base case without extracting data, t1/2 is the same as tf/2 in figure 1, but
without using functional notation and thus avoiding ./3. The predicate t2/2 uses arg/3
to extract a field from the structured data represented as a compound term, t3/2 uses a
plain list of Name=Value and t4/2 uses library(assoc), the SWI-Prolog implemented of
which uses an AVL tree. Table 1 shows the performance of the four loops for 1,000,000
iterations, averaged over 10 runs on an Intel i7-3770 running Ubuntu 13.10 and SWI-
Prolog 7.1.12.

10 http://swi-prolog.996271.n3.nabble.com/Some-thoughts-on-dicts-in-SWIPL-7-tt14327.
html

11 http://www.swi-prolog.org/pack/list
12 https://github.com/wouterbeek/WebQR

tf(Size, N) :-
data(Size, D),
tf2(N, Size, D).

tf2(0, _, _) :- !.
tf2(N, Q, D) :-

Q1 is (N mod Q)+1,
a(D.Q1),
N2 is N - 1,
tf2(N2, Q, D).

data(Size, D) :-
numlist(1, Size, L),
maplist(pair, L, Pairs),
dict_pairs(D, _, Pairs).

pair(X, X-X).

Fig. 1. Benchmark program to evaluate dict lookup performance

Table 1 shows that the overhead of using dicts compared to compound terms is
low (t1 vs. t2). The overhead of the functional notation is caused by type checking and
checking for accessing a field vs. accessing a function on the dict in the predicate ./3.
This overhead could be removed if we had type inference. The last two predicates (t3,
t4) show the performance of two classical Prolog solutions.

t0(N,Q,D) :- Q1 is (N mod Q)+1, a(x), ...
t1(N,Q,D) :- Q1 is (N mod Q)+1, get_dict(b,D,A), a(A), ...
t2(N,Q,D) :- Q1 is (N mod Q)+1, arg(Q1,D,A), a(A), ...
t3(N,Q,D) :- Q1 is (N mod Q)+1, memberchk(Q1=A,D), a(A), ...
t4(N,Q,D) :- Q1 is (N mod Q)+1, get_assoc(Q1,D,A), a(A), ...

Fig. 2. Alternative body (second clause of tf2/3 in figure 1). The predicate a/1 is the dummy
consumer of the data, defines as a().

5.2 String performance

We evaluated the performance of text processing with the task to create the texts “test”N
for N in 1..1,000,000. The results of these tests are presented in table 2. The core of
the 4 loops is shown in figure 3. The predicate tl2/1 has been added on request by
one of the reviewers who claimed that tl1/1 is unfair because it requires pushing the

GC
Test CPUTime Times AvgSize GCTime
t0(1000,1000000) 0.111 0 0 0.000
tf(1000,1000000) 0.271 259 18,229 0.014
t1(1000,1000000) 0.218 129 18,229 0.007
t2(1000,1000000) 0.165 129 10,221 0.006
t3(1000,1000000) 20.420 305 50,213 0.031
t4(1000,1000000) 3.968 1,299 50,213 0.149
t0(3,1000000) 0.113 0 0 0.000
tf(3,1000000) 0.232 259 2,277 0.011
t1(3,1000000) 0.181 129 2,277 0.005
t2(3,1000000) 0.166 129 2,245 0.005
t3(3,1000000) 0.277 189 2,357 0.009
t4(3,1000000) 0.859 346 2,397 0.014

Table 1. Performance test for accessing structured data using various representations. The first
argument is the number of key-value pairs in the data and the second is the number of iterations
in each test. CPUTime is the CPU time in seconds. The GC columns represent heap garbage
collection statistics, showing the number of garbage collections, the average size of the heap
after GC and the time spent on GC in seconds.

list ‘list‘ onto the stacks on each iteration and the SWI-Prolog implementation of
append/2 performs a type-check on the first argument, making it relatively slow. We
claim that tl1/1 is a more natural translation of the other tests. The test c(Threads,Goal)
runs Threads copies of Goal, each in their own threads, while the main thread waits for
the completion of all threads. The tests were executed on a (quad core) Intel i7-3770
machine running Ubuntu 13.10 and SWI-Prolog 7.1.15.

t0(N) :- dummy([test,N],_), N2 is N-1, t0(N2).
ta(N) :- atomic_list_concat([test,N],_), N2 is N-1, ta(N2).
ts(N) :- atomics_to_string(["test",N],_), N2 is N-1, ts(N2).
tl1(N) :- number_codes(N,S), append([‘test‘,S],_),

N2 is N-1, tl(N2).
tl2(N) :- tl2(N,‘test‘).
tl2(N,P) :- number_codes(N,S), append(P,S,_),

N2 is N-1, tl(N2).
dummy(_,_).

Fig. 3. Benchmarks for comparing concatenation of text in various formats.

We realise that the above performance analysis is artificial and limited. The tests only
analyse construction, not processing text in the various representations. Notably atoms

Time GC Atom GC
Test Process Thread Wall Times AvgWorkSet GCTime Times Reclaimed AGCTime
t0(1000000) 0.058 0.058 0.058 786 2,186 0.009 0 0 0.000
ta(1000000) 0.316 0.316 0.316 785 2,146 0.013 99 10,884,136 0.042
ts(1000000) 0.214 0.214 0.214 1,703 2,190 0.023 0 0 0.000
tl1(1000000) 1.051 1.051 1.051 8,570 2,267 0.108 0 0 0.000
tl2(1000000) 0.437 0.437 0.437 3,893 2,231 0.077 0 0 0.000
c(4,t0(1000000)) 0.252 0.000 0.065 0 0 0.000 0 0 0.000
c(4,ta(1000000)) 6.300 0.000 1.924 0 0 0.000 332 36,442,981 0.227
c(4,ts(1000000)) 0.886 0.000 0.232 0 0 0.000 0 0 0.000
c(4,tl1(1000000)) 4.463 0.000 1.143 0 0 0.000 0 0 0.000
c(4,tl2(1000000)) 1.731 0.000 0.441 0 0 0.000 0 0 0.000

Table 2. Comparing atom and string handling performance. The Time columns represent the time
spent by the process, calling thread and the wall time in seconds. The GC columns are described
with table 1. The AtomGC columns represent the atom garbage collector, showing the number of
invocations, number of reclaimed atoms and the time spent in seconds. Note that the GC values
for the concurrent tests are all zero because GC is monitored in the main thread, which just waits
for the others to complete.

and strings are internally represented as arrays and thus provide O(1) access to the i-th
character, but lists allow splitting in head and tail cheaply and can exploit DCGs.

Table 2 makes us draw the following conclusions regarding construction of a short
text from short pieces:

– To our surprise, constructing text as atoms is faster than using lists of codes.
– Strings are constructed considerably faster than atoms.
– Atom handling significantly harms performance of multi-threaded application. Dis-

abling atom garbage collection and looking at the internal contention statistics in-
dicate that the slowdown is caused by contention on the mutex that guards the atom
table.

6 Conclusions

With SWI-Prolog version 7 we have decided to narrow the gap between Prolog and
other key components in the IT infrastructure by introducing commonly found data
types and harmonizing the syntax with modern languages. Besides more transparent
interfacing, these changes are also aimed at simplifying the transition from other lan-
guages. The most important changes are the introduction of dicts (key-value sets) as pri-
mary citizens with access to keys using functional notation, the introduction of strings,
including the common double-quoted notation and an unambiguous representation of
lists. Previous changes added [. . .] and {. . .} as operators and introduced quasi quota-
tions. These extensions aim at smooth exchange of data with other IT infrastructure, a
natural syntax for accessing structured data and the ability to define syntax for DSLs
that is more natural to those not familiar with Prolog’s history.

Acknowledgements

The described extensions result for a large part from interaction with users and other
Prolog developers. Nicos Angelopoulos pointed at the issues interacting with the R-
project. Michiel Hildebrand and Jacco van Ossenbruggen helped formulating the is-
sues with JavaScript and JSON. Jose Morales suggested the ‘block operators’ [. . .]
and {. . . }. Michael Hendricks brought quasi quotations to our attention. Manuel
Hermenegildo and Bart Demoen supported the idea to start moving during the ICLP
in Istanbul. Joachim Schimpf helped achieving a shared set of string operations with
ECLiPSe and provided a test suite for them. Vitor Santos Costa commented on sev-
eral of the ideas and is likely to implement most of them for YAP after the dust has
settled. Other people that commented on the drafts include Richard O’Keefe, Ulrich
Neumerkel, Paulo Moura, Feliks Kluzniak, Alan Baljeu, Kilian Evang, Shon Feder,
Jeff Schultz and Carlo Capelli.

References

1. Hassan Ait-Kaci. An overview of LIFE. In Next generation information system technology,
pages 42–58. Springer, 1991.

2. Nicos Angelopoulos, Vı́tor Santos Costa, João Azevedo, Jan Wielemaker, Rui Camacho, and
Lodewyk Wessels. Integrative functional statistics in logic programming. In Konstantinos F.
Sagonas, editor, PADL, volume 7752 of Lecture Notes in Computer Science, pages 190–205.
Springer, 2013.

3. Gosse Bouma, Gertjan Van Noord, and Robert Malouf. Alpino: Wide-coverage computational
analysis of dutch. Language and Computers, 37(1):45–59, 2001.

4. Amadeo Casas, Daniel Cabeza, and Manuel V Hermenegildo. A syntactic approach to com-
bining functional notation, lazy evaluation, and higher-order in lp systems. In Functional and
Logic Programming, pages 146–162. Springer, 2006.

5. Christopher Ireland, David Bowers, Michael Newton, and Kevin Waugh. A classification
of object-relational impedance mismatch. In Advances in Databases, Knowledge, and Data
Applications, 2009. DBKDA’09. First International Conference on, pages 36–43. IEEE, 2009.

6. Micha Meier and Joachim Schimpf. An architecture for prolog extensions. In Extensions of
Logic Programming, pages 319–338. Springer, 1993.

7. Jan Wielemaker and Nicos Angelopoulos. Syntactic integration of external languages in Pro-
log. In Proceedings of WLPE 2012, 2012.

8. Jan Wielemaker and Michael Hendricks. Why It’s Nice to be Quoted: Quasiquoting for Pro-
log. CoRR, abs/1308.3941, 2013.

