
Why It’s Nice to be Quoted: Quasiquoting for Prolog

Jan Wielemaker1 and Michael Hendricks2

1 Web and Media group, VU University Amsterdam,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands,

J.Wielemaker@vu.nl
2 Hendricks Solutions, LLC, Hanna, Wyoming, USA,

michael@ndrix.org

Abstract. Prolog’s support for dynamic programming, meta programming and
text processing using context free grammars make the language highly suitable
for defining domain specific languages (DSL) as well as analysing, refactoring
or generating expression states in other (programming) languages. Well known
DSLs are the DCG (Definite Clause Grammar) notation and constraint languages
such as CHR. These extensions use Prolog operator declarations and the {. . .}
notation to realise a good syntax. When external languages, such as HTML, SQL
or JavaScript enter the picture, operators no longer satisfy for embedding snippets
of these languages into a Prolog source file. In addition, Prolog has poor support
for quoting long text fragments.
Haskell introduced quasi quotations to resolve this problem. In this paper we
‘ported’ the Haskell mechanism for quasi quoting to Prolog. We show that this
can be done cleanly and that quasi quoting can solve the above mentioned prob-
lems.

1 Introduction

Prolog is commonly used for tasks where it needs to manage snippets of code written
in the syntax of an external language such as HTML, SQL or JavaScript. Such code
snippets often do not comply with the standard Prolog syntax for various reasons [5]:

– Using operator syntax, with only prefix, infix and postfix operators are insufficient.
For example, consider the JavaScript case statement.

– Basic lexical primitives are incompatible. For example, consider textual content in
HTML documents.

– The Prolog term that results from parsing an expression is insufficient for recov-
ering the intent in the target language. For example, consider identifier names that
start with an uppercase letter, which will read as a Prolog variable.

In [5], we claim that some simple languages can be covered well by tweaking the
Prolog syntax using operators, while it is possible to realise acceptable representations
for some other, e.g., XML based languages by using a Prolog syntax to represent the
(simple) data model of these language. In other cases, embedding of external languages
can be supported partially using semantic transformations. For example, calls to Prolog
predicates whose functor matches a table in an RDBMS and whose arity matches the

number of columns can be translated into SQL queries [2]. In [5], we propose a number
of syntactic extensions to broaden the range of languages that can be supported using
one of the above means.

In this paper, we propose a solution for complex external languages for which none
of the above achieves a satisfactory embedding. The solution is called quasi quotations,
where we borrow the integration into the language from Haskell [4]. A Haskell quasi
quotation, as a syntactic element, has a syntax identifier (a function symbol) and a
snippet of quoted text. The function associated with the syntax identifier is called during
parsing and can manipulate the text and massage it to fit further processing by Haskell.
It is good practice for the function to create an abstract syntax tree by parsing the text
according to the rules of the external language. As we will see in this paper, more
lightweight approaches can also be sufficient.

This paper is organised as follows. After examining related work, we revisit the
problem statement and describe why current support in Prolog is insufficient to solve
this problem in a satisfactory way. In section 6 we introduce the notion of quasi quoting
and how it fits into managing strings that present data structures from other languages.
In section 7, we introduce the concrete solution proposed for SWI-Prolog. This is fol-
lowed by examples, future work and the conclusions.

2 Related work

Quasi quotations are used for embedding snippets in many ‘scripting’ languages be-
cause they form an easy to understand mechanism to create long strings or ASTs (Ab-
stract Syntax Tree) with embedded variables that are given values determined by the
environment. Pure textual replacement carries the risk of injection attacks, which trig-
gered research towards more safe template engines.3 Notably modern scripting lan-
guages such as Python and Ruby provide a rich pallete of such techniques. This pa-
per follows the reasoning and technique described in “Why It’s Nice to be Quoted:
Quasiquoting for Haskell” [4]. We refer to this article for further background infor-
mation. Another interesting system is Camlp4 [1], which provides parsing and ‘anti
parsing’ infrastructure for OCaml. Both approaches allows for extending the host lan-
guage. The main difference with our approach is that we merely propose a hook into
the Prolog parser that enable smart processing of quasi quotations without dictating how
these quotations are processed.

3 The need to embed snippets of external languages in Prolog

We will explain this need by an example from SWI-Prolog’s web page generating fa-
cilities [6]. Web pages are by no means the only place where these problems arise [4],
but the domain is quite familiar to many programmers and is of particular interest to us

3 TAL (http://www.owlfish.com/software/simpleTAL/tal-guide.html)
Cheetah (http://www.cheetahtemplate.org/examples.html)
Django (https://docs.djangoproject.com/en/dev/ref/templates/)
Jinja2 (http://jinja.pocoo.org/docs/templates/).

because generating web pages is an important application area for SWI-Prolog. A mod-
ern web page typically consists of HTML that creates the initial DOM structure, CSS
that provides styling and JavaScript for creating interactive components. Our solution
for generating HTML is similar to PiLLoW [3] and based on representing the HTML
DOM structure as a nested Prolog term. The SWI-Prolog HTML page generation li-
brary provides good solutions for

– Generating the page structure.
– Definition and reuse of DCGs that generate page fragments.
– Create references (URLs) to other pages on the server.
– Modular inclusion of resources, such as style and JavaScript files including depen-

dency tracking and automatic ordering by computing a partial order based on the
dependencies.

Pages generated with this infrastructure are guaranteed to be syntactically correct,
regardless of the data from which the page is created. This built-in protection against
injection attacks is considered a key asset of the server infrastructure and a property that
we wish to maintain when integrating JavaScript into the page.

In earlier publications [5, 6] we already identified two missing pieces: (1) longer
(HTML) text fragments and (2) JavaScript fragments. The first problem can be solved
using PWP4. PWP was developed by Richard O’Keefe and can be considered the oppo-
site of the above described Prolog based page generator. The page is described in XML
and reserved XML elements and tags trigger the generation of dynamic page compo-
nents based on the evaluation of Prolog goals. Like the Prolog page generator, PWP
protects against injection attacks because it considers solutions from Prolog as data that
is used to extend the XML DOM, which is subsequently serialized for generating the
final page. PWP simplifies the specification of pages with large amounts of text, but the
rule format is less natural and it lacks the modularity of the Prolog based generator.

We have been struggling with JavaScript, trying various approaches. Currently,
there are a large number of JavaScript frameworks that provide ‘widgets’ for use on
web pages. Popular examples are YUI5 and jQuery6. Including these widgets typically
demands creating a DOM structure that carries an id attribute and represents the data
(e.g., a menu may be represented as a ul list or an advanced text editor can be rep-
resented as a textarea). This DOM element is transformed into the target widget
by calling a JavaScript initialisation function that modifies the DOM of the target el-
ement and installs event handlers that provide the dynamic behavior of the element.
The initialisation function often takes a configuration object (a JavaScript object lit-
eral, {name:value, . . . }), where some of the values are callback functions, represented
as JavaScript lambda functions.

The HTML framework is well equipped to create the initial DOM and pull in the
JavaScript and CSS resources using its dependency framework. The initialisation call

4 Prolog Well-formed Pages, http://www.swi-prolog.org/pldoc/package/
sgml.html

5 http://yuilibrary.com/
6 http://jquery.com/

is easy enough to abstract, except when the configuration object contains lambda func-
tions. These are often required to massage JSON data from the server into the desired
visualisation and support AJAX based operations, such as computing auto-completion
candidates. It is quite common for such objects to require dozens of lines of JavaScript.
Representing JavaScript lambda functions requires support for the complete complex-
ity of the language. One way to do this is to represent the JavaScript fragment as a list
of literals, mixed with DCG rules that insert content generated from Prolog, such as
URLs or JavaScript literal objects. This leads to code as below, which we consider hard
to type on a keyboard, hard to read and, because it is so hard to read, often subject to
syntax errors. Finally, the code below is subject to injection attacks, unless we hand the
variables URL and Id to a grammar that generates valid JavaScript string content from
any Prolog atom.

[’$.ajax({ url: "’,URL,’",\n’,
’ data: { id: "’,Id,’",\n’,
’ }\n’,
’ });\n’

]

We tried several designs to improve on the above, none of which we considered satis-
factory. Below are the main directions that we tried.

– Abstract away. This implies using the HTML page generation facilities to generate
e.g., make a JavaScript call, initialize a variable from Prolog data, etc. To remain
managable, a fairly high level of abstraction is needed that is geared towards the
JavaScript framework used. This is problematic because it makes it hard for the
programmer to relate the JavaScript examples from the framework documentation
to the Prolog code. Although it is possible to abstract some of the lambda functions,
there is too much variation to deal with all of them.

– Put the JavaScript in a separate file. This creates many short files that typically
only support a specific generated HTML page because the details of the required
JavaScript, such as locations on the server that must be addressed vary from page to
page. Because there is no formal relation between the two pages, it is hard to relate
them and keep them in sync.

– Create application specific JavaScript resources that can be configured without the
need for lambda functions in the configuration object. The problem here is that the
application developers create their own refinement of the external widget library
that requires understanding and documentation, while the externally provided li-
braries are already quite high level. In other words, the newly created layer adds
mostly new complications for managing and understanding the code.

We have come to the conclusion that (1) we need a mechanism that allows for
including JavaScript into the Prolog page generation source code, (2) the representation
of JavaScript in the Prolog source must be easy to type on a keyboard and understand,
(3) the generated JavaScript should be safeguarded against injection attacks without
explicit calls to encode data and (4) syntactic validation of the generated fragments are
likely to improve productivity.

4 Using Prolog syntax

First, we investigated to what extent the syntax extensions proposed in [5] would help
to represent JavaScript naturally using Prolog syntax. We realised support for the empty
argument lists (e.g., name()), array notation and function bodies using {. . .}. These
were resolved after a proposal by Jose Morales, which extends the notion of operators to
lists and curly-bracket blocks. In addition to our hope of improving JavaScript support,
list subscription and curly-bracket attribute lists are in use with B-Prolog and ECLiPSe.

We have realised a prototype that can express a fair deal of the JavaScript syntax.
However, the following problems remain unresolved:

– It requires ! and . to be defined as operators. These operators are known to cause
ambiguity issues.

– Quoting of identifiers may be needed (e.g., ’String’(...))
– A special symbol is needed to distinguish identifiers from strings. (”string” cannot

be used because it is a list of integers).
– Restrictions are needed with regard to spaces. No space is allowed after function

symbols and keywords such as while. In some places additional spaces are re-
quired to prevent Prolog from reading two JavaScript tokens as a single Prolog
token.

– Some symbols clash with Prolog. Consider | or %, which play a totally different
role in the Prolog syntax.

– Some JavaScript snippets can be turned into valid Prolog syntax, but the resulting
AST is ambiguous. For example, ++a is different from a++, but both result in the
Prolog term ++(a).

We believe that the result would have been more usable than using Prolog quoted
atoms for short (1-10 lines) JavaScript snippets, that include simple lambda functions
such as making trivial AJAX callbacks. Our main point of doubt is that it is hard to
convey the restrictions to casual Prolog users, which makes it likely to get surprised
by output that differs from the expectations and can only be understood through deep
knowledge of Prolog’s syntax and underlying term representation.

5 The three problems

If we cannot include JavaScript using Prolog syntax with user-defined operators, the
other option is to use (quoted) text. For this, we need to solve three orthogonal problems:

1. Allow for long quoted text. Current (ISO) Prolog only provides single and double
quoted text, which follow the same rules. In particular

– Quoted text cannot span more than one line, unless the newline is escaped with
a backslash.

– The backslash and quote must be escaped with a backslash.
– If good layout of the output is desirable, there is no way to indent continuation

lines in the Prolog source such that the indentation does not show up in the
output.

With these restrictions, simple copy and paste of example code must be followed
by a tedious process of making the text fit the Prolog syntax, while the reverse is
needed to test the code, for example in a JavaScript console.

2. Relate Prolog variables (data) to references in the quoted material.
3. Establish a safe way to embed data into the template string.

These problems are independent. We illustrate this with a small HTML example
that presents a page with the current time. We use an HTML skeleton to make the
comparison fair. In pure Prolog, this could be achieved using the following code snippet:

...,
get_time(Now),
format_time(atom(Date), ’%+’, Now),
print_html([date=Date],

’<h1>My digital clock</h1>\n\
<p>It is now {{date}}</p>’).

The task of print html/2 is to relate the template variable date to the Prolog variable
Date (third item above), determine the lexical context of {{date}} to know the proper
encoding that needs to be done, realise this encoding on the Prolog atom and create the
proper output string. This is the second item on the list above. Ideally, we would like an
error if the HTML fragment is malformed to begin with.

In pure ISO Prolog, all work must be done at runtime. Many Prolog systems provide
goal expansion/2 or similar, which allows for doing the analysis of the template at
compile time. What remains on our wishlist is to (1) get rid of [date=Date] and
(2) get rid of complicated escape sequences for languages that frequently use quotes or
backslashes. We propose to solve both issues using quasi quotations for Prolog.

6 Quasi Quotations

Quasi quotations find their origin in linguistics7 and introduces variables into textual
expressions. They are commonly used in scripting languages. For example:

a=world; echo "Hello $a" // Unix shell
$a = "world"; print "Hello $a"; // Perl

This approach is natural to the (novice) programmer. Unfortunately it does not work for
Prolog because nothing in the normal Prolog compilation process provides access to
the names of variables. In addition, plain text insertion is a direct invitation to injection
attacks. As described in section 5, the template replacement code must be aware of the
syntax to perform a safe, i.e., properly escaped, insertion of the variable.

Haskell quasi quotes resolve the injection problem (which is described as a typing
problem in [4]) by associating a syntax identifier directly with the quoted data. The
syntax identifier is associated with a function which typically parses the quoted material
into an abstract syntax tree that can represent the target language.

7 http://en.wikipedia.org/wiki/Quasi-quotation

7 Quasi Quotations in Prolog

Realising quasi quotations requires for a syntactic construct that (1) provides long
quoted strings, (2) associates the quotation to a predicate that can act on it accord-
ing to the requirements of processing the external language and (3) provides access to
the clause’s variable dictionary.

There are few options for adding a syntax extension to Prolog because Prolog ‘sym-
bol’ characters glue together to form an atom to which operator properties can be as-
signed. According to Ulrich Neumerkel,8 taking sequences of Prolog solo character that
do not form names is a good starting point. Among others, this allows for {|...|}.
Combined with a term that identifies the syntax, we propose the following syntax for
Prolog quasi quotations, where Syntax is an arbitrary (callable) Prolog term:

{|syntax-identifier ||quoted-material |}

In the rather unlikely event that |} needs to be embedded in the quoted material,
this can be realised in two ways: (1) define the predicate that processes the quotation to
respect some escape sequence or (2) use the existing flexibility of the target language
to avoid |}. An example of (1) could be to introduce the mapping \\ → \, \{ → {,
\}→ }, after which the user can write |\}. An example of (2) can be to insert a space
between the two if this does not change the semantics or write \u007c} inside a string
if the target language supports \uXXXX escapes inside strings.

Orthogonal to the syntax is the mapping of the quoted material to a Prolog term,
which can be a full AST of the snippet or a simplified representation as used in sec-
tion 8.2. This mapping is defined by the syntax-identifier, a callable term to which we
refer as Syntax from now on. At the same time, quasi quotation merges (Prolog) vari-
ables from the environment into the quoted material. Quasi quotations are processed as
follows:

– The predicate read/1 is modified to recognize the Syntax term and the quoted text.
– After all normal processing is finished, read/1 performs the following call:

call(+SyntaxName, +Content, +SyntaxArgs, +VarDict, -Result)

Here, SyntaxName is the functor of the Syntax term and SyntaxArgs is the list of ar-
guments, i.e., Syntax =.. [SyntaxName|SyntaxArgs]. In section 8, we
will see why it is useful to split the functor from the arguments. Content is an
opaque handle to the quoted material as we will see later. VarDict is Name = Var
list conforming to read term/3 and write term/3. Result is determined by the call
to the deterministic predicate SyntaxName/4. The predicate read/1 inserts Result at
the location of the quasi quotation in the output term.

– The Result term (and thus the quasi quotation) must be a goal (see section 8.3) or
appear as the argument of a goal that processes (often serializes) the result (often
an AST). For example, reply html page/3 in section 8.1 is designed to serialize
the HTML DOM (AST) produced by the HTML parser called by the quasi quoter.

8 https://lists.iai.uni-bonn.de/pipermail/swi-prolog/2013/
010422.html

We provide two support predicates for SyntaxName/4 to process the result. Note
that there are no restrictions on how the called predicate combines the quoted text with
the syntax arguments and variable dictionary to construct the final term.

phrase from quasi quotation(:Grammar, +Content)
Calls the grammar Grammar on the list formed by Content. This predicate uses the
pure input library described in [7] to parse the content. Syntax errors may be raised
using the non-terminal syntax error//1, which produces a precise syntax
location that consists of the file, line number, line position and character count.

with quasi quotation input(+Content, -Stream, :Goal)
Calls Goal on the Prolog stream Stream. The stream position information reflects
the location in the source file, except for the byte count.

8 Examples of using quasi quotes in Prolog

In this section we provide three examples to illustrate quasi quotations. The first exam-
ple (HTML) is based on the existing SWI-Prolog libraries for parsing and serializing
HTML. The second example demonstrates how JavaScript can be handled safely (but
with limited syntax checking support) by only tokenising the quotation. The third ex-
ample concerns SPARQL,9 demonstrates the value of the quasi quotation approach in a
scenario where the parsed quasi quotation is used as a Prolog query.

8.1 Quasi quoting HTML

The first, complete, example illustrates safe embedding of long HTML texts into a Pro-
log web page. The code of the quasi quoter is given in figure 2. First, we give a fully
working webserver based on this quasi quoter in figure 1. We notice that the quoted
material can contain multiple lines, does not require any line endings and may contain
quotes. The content of the quoted material is valid HTML and because an editor can
easily detect the {|html and |} indicators, it is not hard for development tools to pro-
vide support for the embedded HTML, such as highlighting, indentation or completion.

The HTML quoter is defined to limit Prolog variables that are replaced to those that
appear as arguments to the html syntax indicator (Date in figure 1). The convention to
pass variables that are subject to replacement explicitly has the following advantages:
(1) it avoids a singleton variable warning on Date10, (2) Prolog clauses have a rela-
tively large number of variables due to the lack of functional notation which can avoid
variables and destructive assignment which allows for reusing a variable, (3) it makes
the substitution more explicit and (4) it allows the quoter to check that all intended
relacements were made.

The HTML quasi quoter as defined in figure 2 replaces Prolog variables indicated
by its arguments (html(Date)) if they appear as value for an attribute or content of an
element. It performs the following steps:

9 http://www.w3.org/TR/sparql11-overview/
10 This problem can also be resolved by the quasi quoter by removing singleton variables that

appear inside the result term of the quasi quoter.

:- use_module(library(http/thread_httpd)).
:- use_module(library(http/http_dispatch)).
:- use_module(library(http/html_write)).

server(Port) :- http_server(http_dispatch, [port(Port)]).

:- http_handler(/, clock, []).

clock(_Request) :-
get_time(Now),
format_time(atom(Date), ’%+’, Now),
reply_html_page(

title(’My digital clock’),
{|html(Date)||
<h1>My digital clock</h1>

<p>It is now Date
|}).

Fig. 1. Example web server with embedded HTML

1. Parse the quoted HTML text using load html/3. The option max errors(0)
causes the parser to throw a syntax error exception and abort on the first error.
As this processing happens while reading the source, the HTML syntax error is
reported during compilation and includes line, line position and character count
information.

2. The XML DOM structure is recursively traversed and attributes that have a Prolog
variable as value or content that matches a Prolog variable from Syntax is replaced
by this variable.

When the page is generated (figure 1), binding of the variable Date completes the
XML DOM structure. This structure is serialised by reply html page/3. The serialisa-
tion ensures type safety and the generation of correct HTML syntax.11

8.2 Embedding JavaScript

The HTML quasi quoter of the previous section was easily implemented because the
SWI-Prolog infrastructure already contains a parser and serializer for HTML. We do
not have these for JavaScript. We are likely to develop this in the future, but here we
want to illustrate that it is possible to achieve safe template replacement by only using
a tokeniser.

11 The HTML infrastructure has a global option to select between HTML and XHTML serial-
isation, which implies that HTML in the Prolog source may be serialised as XHTML to the
client.

:- module(html_quasi_quotations, [html/4]).
:- use_module(library(sgml)).
:- use_module(library(apply)).
:- use_module(library(lists)).
:- use_module(library(quasi_quotations)).

:- quasi_quotation_syntax(html).

html(Content, Vars, Dict, DOM) :-
include(qq_var(Vars), Dict, QQDict),
with_quasi_quotation_input(

Content, In,
load_html(In, DOM0,

[max_errors(0)
])),

xml_content(QQDict, DOM0, DOM).

qq_var(Vars, _=Var) :- member(V, Vars), V == Var, !.

xml_content(Dict, [Name], [Var]) :-
atom(Name),
memberchk(Name=Var, Dict), !.

xml_content(Dict, Content0, Content) :-
maplist(xml_content_element(Dict), Content0, Content).

xml_content_element(Dict,
element(Tag, Attrs0, Content0),
element(Tag, Attrs, Content)) :- !,

maplist(xml_attribute(Dict), Attrs0, Attrs),
xml_content(Dict, Content0, Content).

xml_content_element(_, Element, Element).

xml_attribute(Dict, Attr=Name, Attr=Var) :-
memberchk(Name=Var, Dict), !.

xml_attribute(_, Attr, Attr).

Fig. 2. Source for the HTML quasi quoter

Because JavaScript is generated as part of the HTML page generation, the
JavaScript quasi quoter produces output for the HTML backend. It translates the
JavaScript into a list of two types of elements: (1) plain atoms (that will be emitted
in the context of a script element) and calls to a grammar js expression//1,
which defines a translation of native Prolog data into JavaScript literals according to
table 1.

The quasi quoter tokenises the quoted material using an ECMAScript compliant
tokeniser, implemented using a Prolog grammar. The quoter (figure 4) replaces identi-

Prolog JavaScript
number number
atom string (escaped using JavaScript syntax)
@true boolean true
@false boolean false
@null null constant
List array
object(NameValueList) object literal
{ Name:Value, ...} object literal

Table 1. Prolog to JavaScript conversion

fier tokens that match with a Prolog variable with a call to js expression//1, and
translates the remainder into plain atoms. Figure 3 shows a shortened predicate from the
SWI-Prolog website that applies the JavaScript quasi quoter to initialise a jQuery wid-
get called tagit. The actual predicate contains a larger configuration object, just ‘more of
the same’. In this example, the first block is used to compute server URLs and properties
for Obj that we need in the remainder. Next, the html//1 call creates the DOM needed
for the tagit widget. Here, we could also have used the HTML quasi quoter. The choice
is rather arbitrary in this case because the fragment is short and defines only structure
and data that is passed in from a variable. Next, we see html requires//1, which
ensures that the page head is extended to load the required JavaScript and CSS resources
and finally, there is the script fragment with embedded Prolog variables. Because Prolog
variables are valid JavaScript identifiers, the fragment contains valid JavaScript syntax.

8.3 Embedding SPARQL

SPARQL12 is the query language for the semantic web RDF language. In most of this
section, one may replace SPARQL with SQL. ClioPatria is SWI-Prolog’s semantic web
framework, which contains a SPARQL ‘endpoint’. The SPARQL engine compiles a
SPARQL query into a Prolog query, optimizes and executes this query and serializes
the results according to the SPARQL result specification.

When writing middleware (reasoning) in the ClioPatria, one typically uses direct
queries to the embedded RDF store for the reasoning. In some cases, one would like
to use SPARQL for specifying the query. Consider cases where the query is already
available in SPARQL, the query must also be used with external servers or the author
is much more fluent in SPARQL than in Prolog. The quasi quotation syntax can be
used to write down the code below. The SPARQL query is parsed at compile time and
the SPARQL projection variables can naturally integrate with the Prolog variable of
the enclosing clause. Note that in this example, we think it is better not to pass the
substituted variables as arguments to the sparql syntax term because this list is made
explicit in the variable projection clause that starts the query.

12 http://www.w3.org/TR/sparql11-overview/

prolog:doc_object_page_footer(Obj, _Options) -->
{ http_link_to_id(complete_tag, [], Complete),
http_link_to_id(show_tag, [], OnClick),
http_link_to_id(remove_tag, [], Remove),
object_id(Obj, ObjectID),
object_tags(Obj, Tags),
atomic_list_concat(Tags, ’,’, Data)

},
html(div(class(’user-annotations’),

input([id(tags), value(Data)]))),
html_requires(tagit),
js_script({|javascript(Complete, OnClick, ObjectID, Remove)||

$(document).ready(function() {
$("#tags").tagit({

autocomplete: { delay: 0.3,
minLength: 1,
source: Complete

},
onTagClicked: function(event, ui) {
window.location.href = OnClick+"tag="+
encodeURIComponent(ui.tagLabel);

},
beforeTagRemoved: function(event, ui) {
$.ajax({ dataType: "json",

url: Remove,
data: { tag: ui.tagLabel,

obj: ObjectID
}

});
}

});
});

|}).

Fig. 3. Shortened code fragment from the SWI-Prolog website that illustrates the embedding of
JavaScript for initializing a widget.

...,
{|sparql||
SELECT ?Name, ?Place WHERE {

...
}
|}>

javascript(Content, Vars, Dict, \Parts) :-
include(qq_var(Vars), Dict, QQDict),
phrase_from_quasi_quotation(

js(QQDict, Parts), Content).

qq_var(Vars, _=Var) :- member(V, Vars), V == Var, !.

js(Dict, [Pre, Subst|More]) -->
here(Here0), js_tokens(_), here(Here1),
js_token(identifier(Name)),
{ memberchk(Name=Var, Dict), !,

Subst = \js_expression(Var),
diff_to_atom(Here0, Here1, Pre)

},
js(Dict, More).

js(_, [Last]) -->
string(Codes), \+ [_], !,
{ atom_codes(Last, Codes) }.

js_tokens([]) --> [].
js_tokens([H|T]) --> js_token(H), js_tokens(T).

%! diff_to_atom(+Start, +End, -Atom)
%
% True when Atom is an atom that represents the
% characters between Start and End, where End must
% be in the tail of the list Start.

diff_to_atom(Start, End, Atom) :-
diff_list(Start, End, List),
atom_codes(Atom, List).

diff_list(Start, End, List) :- Start == End, !, List = [].
diff_list([H|Start], End, [H|List]) :-

diff_list(Start, End, List).

here(Here, Here, Here).

Fig. 4. Partial source for the javascript syntax quoter.

A similar approach is feasible with SQL, offering a more convenient way to interact
with the database than using prepared statements and both a safer and more convenient
way than direct text-based SQL queries.

9 Implementation

The implementation of quasi quotation handling in an existing Prolog system is straight-
forward and should not require more than a couple of days. The tokeniser is extended
to recognise {|. On encountering this token, the parser builds a list of terms, each of
which represents a quasi quotation. If the list of quasi quotations is not empty when
read/1 reads the fullstop token, it materializes the variable dictionary and calls a rou-
tine that calls the quasi quotation parsers. Note that quasi quotations are parsed after
read/1 completes reading the term. This allows for quasi quotations to refer to variables
that appear after the quasi quotation (see section 8.3). This does imply that read/1 must
buffer the quoted text. The functionality is made available to the user through the library
quasi quotations.pl, which appeared in SWI-Prolog 6.3.17.

The Prolog tokeniser is extended with two tokens. {| is a new token that starts a
quasi quotation. The sequence ||...|} is processed as a single token.

10 Future work

Quasi quotations are young in SWI-Prolog. We believe that the core functionality de-
scribed in this article is largely future-proof.

One of the future tasks is to establish libraries that facilitate syntax handling and
safe replacement. Another is to establish design patterns for using this technology. What
can be learn from the Haskell, Python and Ruby communities here? Quasi quotations
typically ‘evaluate’ to a Prolog term that shares variables with the clause into which it is
embedded. We do not have a functional syntax that we can exploit to force ‘evaluation’
of this term with instantiated variables. On the other hand, we can also use the non-
ground abstract syntax tree and use it for e.g., matching tasks.

11 Conclusions

In this article we have motivated why it is necessary to be able to embed longer snippets
of code written in another language in Prolog source code. This requires for a syntax that
permits embedding, practically without the need for Prolog escaping in the embedded
text. Next, this text must be related to Prolog data. The integration of Prolog data into the
snippet must be done according to the syntax and data model of the external language.
This implies we need a programmable component that is related to the quoted material.

Combining these requirements into one syntactic extension that is executed by
read/1 simplifies support by tooling such as editors, provides natural access to Prolog
variables and allows for seemless integration of error messages.

We have demonstrated quasi quotations using two implemented quoters. These
quoters allow for easy copying and pasting material in their native syntax to and from
Prolog source. Using these quoters is likely to reduce the learning curve for embedding
snippets into Prolog, while the quasi quoter can guarantee that the integrated material
is (syntactically) correct and that Prolog material is safely integrated.

Acknowledgements

Jan Pobrislo provided the insights that were used to write section 5. Michiel Hildebrand
and Jacco van Ossenbruggen (VU University Amsterdam) have tried many of the pure
Prolog based alternatives which were needed to formulate section 3 and section 4. They
also help shaping the current JavaScript quasi quoter and commented on drafts of this
text. Ulrich Neumerkel has propose the combination of | with brackets and pointed at
the tokenisation issues described in section 9.

This publication was supported by the Dutch national program COMMIT/

References

1. Jake Donham and Nicolas Pouillard. Camlp4 and template haskell. In ACM SIGPLAN Com-
mercial Users of Functional Programming, CUFP ’10, pages 6:1–6:1, New York, NY, USA,
2010. ACM.

2. Christoph Draxler. Accessing relational and higher databases through database set predicates
in logic programming languages. Phd thesis, Zurich University, 1991.

3. Daniel Cabeza Gras and Manuel V. Hermenegildo. Distributed WWW programming using
(ciao-)prolog and the piLLoW library. TPLP, 1(3):251–282, 2001.

4. Geoffrey Mainland. Why it’s nice to be quoted: quasiquoting for haskell. In Gabriele Keller,
editor, Haskell, pages 73–82. ACM, 2007.

5. Jan Wielemaker and Nicos Angelopoulos. Syntactic integration of external languages in Pro-
log. In Proceedings of WLPE 2012, 2012.

6. Jan Wielemaker, Zhisheng Huang, and Lourens van der Meij. Swi-prolog and the web. TPLP,
8(3):363–392, 2008.

7. Jan Wielemaker and Ulrich Neumerkel. Precise garbage collection in Prolog. In Proceedings
of CICLOPS 2008, 2008.

