
Thesaurus-based search in large heterogeneous
collections

Jan Wielemaker1, Michiel Hildebrand2,
Jacco van Ossenbruggen2, and Guus Schreiber3

1 University of Amsterdam, Human Computer Studies (HCS), The Netherlands
2 CWI Amsterdam, The Netherlands

3 VU University Amsterdam, The Netherlands

Abstract. In cultural heritage, large virtual collections are coming into
existence. Such collections contain heterogeneous sets of metadata and
vocabulary concepts, originating from multiple sources. In the context
of the E-Culture demonstrator we have shown earlier that such virtual
collections can be effectively explored with keyword search and semantic
clustering. In this paper we describe the design rationale of ClioPatria,
an open-source system which provides APIs for scalable semantic graph
search. The use of ClioPatria’s search strategies is illustrated with a
realistic use case: searching for ”Picasso”. We discuss details of scalable
graph search, the required OWL reasoning functionalities and show why
SPARQL queries are insufficient for solving the search problem.

1 Introduction

Traditionally, cultural heritage, image and video collections use proprietary
database systems and often their own thesauri and controlled vocabularies to
index their collection. Many institutions have made or are making (parts of)
their collections available online. Once on the web, each institution, typically,
provides access to their own collection. The cultural heritage community now
has the ambition to integrate these isolated collections and create a potential
source for many new inter-collection relationships. New relations may emerge
between objects from different collections, through shared metadata or through
relations between the thesauri.

The MultimediaN E-culture project4 explores the usability of semantic web
technology to integrate and access museum data in a way that is comparable
to the MuseumFinland project [1]. We focus on providing two types of end-user
functionality on top of heterogeneous data with weak domain semantics. First,
keyword-based search, as it has become the de-facto standard to access data
on the web. Secondly, thesaurus-based annotation for professionals as well as
amateurs.

This document is organised as follows. In Sect. 2 we first take a closer look
at our data and describe our requirements by means of a use case. In section
4 http://e-culture.multimedian.nl

2 Wielemaker and Hildebrand

Sect. 3 we take a closer look a search and what components are required to
realise keyword search in a large RDF graph. The ClioPatria infrastructure is
described in section Sect. 4, together with some illustrations on how ClioPatria
can be used. We conclude the paper with a discussion where we position our
work in the Semantic Web community.

2 Materials and use cases

Metadata and vocabularies In our case study we collected descriptions of 200,000
objects from six collections annotated with six established thesauri and several
proprietary controlled keyword lists, which adds up to 20 million triples. We
assume this material is representative for the described domain. Using semantic
web technology it is possible to unify the data while preserving its richness. The
procedure is described elsewhere [2] and summarised here.5

The MultimediaN E-Culture demonstrator harvests metadata and vocabu-
laries, but assumes the collection owner provides a link to the actual data object,
typically an image of a work such as a painting, a sculpture or a book. When
integrating a new collection into the demonstrator we typically receive one or
more XML/database dumps containing the metadata and vocabularies of the
collection. Thesauri are translated into RDF/OWL, where appropriate with the
help of the W3C SKOS format for publishing vocabularies [3]. The metadata is
transformed in a merely syntactic fashion to RDF/OWL triples, thus preserving
the original structure and terminology. Next, the metadata schema is mapped
to VRA6, a specialisation of Dublin Core for visual resources. This mapping
is realized using the ‘dumb-down’ principle by means of rdfs:subPropertyOf

and rdfs:subClassOf relations. Subsequently, the metadata goes through an en-
richment process in which we process plain-text metadata fields to find match-
ing concepts from thesauri already in the demonstrator. For example, if the
dc:creator field contains the string Pablo Picasso, than we will add the con-
cept ulan:500009666 from ULAN7 to the metadata. Most enrichment concerns
named entities (people, places) and materials. Finally, the thesauri are aligned
using owl:sameAs and skos:exactMatch relations. For example, the art style Edo
from a local ethnographic collection was mapped to the same art style in AAT8

(see the use cases for an example why such mappings are useful). Our current
database (April 2008) contains 38,508 owl:sameAs and 9,635 skos:exactMatch

triples and these numbers are growing rapidly.
After this harvesting process we have a graph representing a connected net-

work of works and thesaurus lemmas that provide background knowledge. VRA
and SKOS provide —weak— structure and semantics. Underneath, the richness
of the original data is still preserved. The data contains many relations that are
not covered by VRA or SKOS, such as relations between artists (e.g. ULAN
5 The software can be found at http://sourceforge.net/projects/annocultor
6 Visual Resource Association, http://www.vraweb.org/projects/vracore4/
7 Union List of Artist Names is a thesaurus of the Getty foundation
8 Art & Architecture Thesaurus, another Getty thesaurus

Thesaurus-based search in large heterogeneous collections 3

teacherOf relations) and between artists and art styles (e.g. relations between
AAT art styles and ULAN artists [4]). These relations are covered by their orig-
inal schema. Their diversity and lack of defined semantics make it hard to map
them to existing ontologies and provide reasoning based on this mapping.

Use cases Assume a user is typing in the query “picasso”. Despite the name
Picasso is a reasonably unique in the art world, the user may still have many
different intentions with this simple query: a painting by Picasso, a painting of
Picasso, the styles Picasso has worked in? Without an elaborate disambiguation
process it is impossible to tell in advance.

Fig. 1. Clustered result searching “picasso”

Fig. 1 show part of the results of this query in the MultimediaN demonstrator.
We see several clusters of search results. The first cluster contains works from
the Picasso Museum, the second cluster contains works by Pablo Picasso (only
first five hits shown; clicking on the arrow allows the user to inspect all results);
clusters of surrealist and cubist paintings (styles that Picasso worked in; not
shown for space reasons), and works by George Braque (a prominent fellow
Cubist painter, but the works shown are not necessarily cubist). Other clusters
include works made from picasso marble and works with Picasso in the title
(includes two self portraits). The basic idea is that we are aiming to create
clusters of related objects such that the user can afterwards choose herself what
she is interested in. We have found that even in relatively small collections of
100K objects, users discover interesting results they did not expect. We have
termed this type of search tentatively ‘post-query disambiguation’: in response to
a simple keyword query the user gets (in contrast to, for example, Google image
search) semantically-grouped results that enable further detailing of the query.
It should be pointed out that the knowledge richness of the cultural heritage

4 Wielemaker and Hildebrand

domain allows this approach to work. In less rich domains such an approach is
less likely to provide added value. Notably typed resources and relations give
meaning to the path linking a literal to a target object.

Fig. 2. Explore alignment to find Edo painting from “tokugawa”

Another typical use case for search concerns the exploitation of vocabulary
alignments. The Holy Grail of the unified cultural-heritage thesaurus does not
exist and many collection owners have their own home-grown variants. Consider
the situation in Fig. 2, which is based on real-life data. A user is searching
for “tokugawa”. This Japanese term has actually two major meanings in the
heritage domain: it is the name of a 19th century shogun and it is a synonym for
the Edo style period. Assume for a moment that the user is interested in finding
works of the latter type. The Dutch ethnographic museum in Leiden actually
has works in this style in its digital collection, such as the work shown in the top-
right corner. However, the Dutch ethnographic thesaurus SVCN, which is being
used by the museum for indexing purposes, only contains the label “Edo” for
this style. Fortunately, another thesaurus in our collection, the aforementioned
AAT, does contain the same concept with the alternative label “Tokugawa”. In
the harvesting process we learned this equivalence link (quite straightforward:
both are Japanese styles with matching preferred labels). The objective of our
graph search is to enable to make such matches.

Although this is actually an almost trivial alignment, it is still extremely
useful. The cultural-heritage world (like any knowledge rich domain) is full of
such small local terminology differences. Multilingual differences should also be
taken into consideration here. If semantic-web technologies can help making such
matches, there is a definite added value for users.

3 Required methods and components

In this section we study the methods and components we need to realise the key-
word search described above. Our experiments indicate that meaningful matches
between keyword and target often involve chains up to about five relations. At

Thesaurus-based search in large heterogeneous collections 5

this distance there is a potentially huge set of possible targets. The targets can
be organised by rating based on semantics or statistics and by clustering based
on the graph pattern linking a literal to the target. We discuss three possible ap-
proaches: querying using a fixed set of graph patterns, completely unconstrained
graph search and best-first exploration of the graph.

Using a set of fixed queries A cluster as shown in Fig. 1 is naturally rep-
resented as a graph pattern as found in many semantic web query languages.
If we can enumerate all possible meaningful patterns of properties that link lit-
erals to targets we reduce the search process to finding instances of all these
graph patterns. This would be a typical approach in Semantic Web applications
such as DBin [5]. This approach is, however, not feasible for highly heterogenous
data sets. Our current data contains over 600 properties, most of which do not
have a very well defined meaning (e.g. detailOf, cooperatedWith, usesStyle). If
we combine this with our observation that is it quite common to find valuable
results at 4 or even 5 steps from the initial keywords, we have to evaluate a
very large number of possible patterns. To a domain expert, it is obvious that
the combination of cooperatedWith and hasStyle can be meaningful while “A
died in P , where B was born” is generally meaningless, but the set of possible
combinations to consider is very large. Automatic rating of this type of relation
pattern is, as far as we know, not feasible. Even if the above is possible, new
collections and vocabularies often come with new properties, which must all be
considered in combination to the already created patterns.

Using graph exploration Another approach is to explore the graph, looking
for targets that have, often indirectly, a property with matching literal. This
implies we search the graph from Object to Subject over arbitrary properties,
including triples entailed by owl:inverseOf and owl:SymmetricProperty. We ex-
amine the scalability issues using unconstrained graph patterns, after which we
examine an iterative approach.

Considering a triple store that provides reasoning over owl:inverseOf and
owl:SymmetricProperty it is easy to express an arbitrary path from a literal to
a target object with a fixed length. The total result set can be expressed as a
union of all patterns of fixed length up to (say) distance 5. Table 1 provides
the statistics for some typical keywords at distances 3 and 5. The table shows
total visited and unique results for both visited nodes and targets found which
indicates that the graph contains a large number of alternative paths and the
implementation must deal with these during the graph exploration to reduce
the amount of work. Even without considering the required post-processing to
rank and cluster the results it is clear that we cannot obtain interactive response
times (of at most a few seconds) using this approach.

Fortunately, a query system that aims at human users only needs to pro-
duce the most promising results. This can be achieved by introducing a distance
measure and doing best-first search until our resources are exhausted (anytime
algorithm) or we have a sufficient number of results. The details of the distance

6 Wielemaker and Hildebrand

Keyword Distance Literals Nodes Targets Time
Visited Unique Visited Unique (sec.)

tokugawa 3 21 1,346 1,228 913 898 0.02
steen 3 1,070 21,974 7,897 11,305 3,658 0.59
picasso 3 85 9,703 2,399 2,626 464 0.26
rembrandt 3 720 189,611 9,501 141,929 4,292 3.83
impressionism 3 45 7,142 2,573 3,003 1,047 0.13
amsterdam 3 6,853 1,327,797 421,304 681,055 142,723 39.77
tokugawa 5 21 11,382 2,432 7,407 995 0.42
steen 5 1,070 1,068,045 54,355 645,779 32,418 19.42
picasso 5 85 919,231 34,060 228,019 6,911 18.76
rembrandt 5 720 16,644,356 65,508 12,433,448 34,941 261.39
impressionism 5 45 868,941 50,208 256,587 11,668 18.50
amsterdam 5 6,853 37,578,731 512,027 23,817,630 164,763 620.82

Table 1. Statistics for exploring the search graph for exactly Distance steps (triples)
from a set of literals matching Keyword. Literals is the number of literals holding a
word with the same stem as Keyword ; Nodes is the number of nodes explored and
Targets is the number of target objects found. Time is on an Intel Core duo X6800.

measure are still subject of research [6], but not considered vital to the architec-
tural arguments in this article. The complete search and clustering algorithm is
given in Fig. 3. In our experience, the main loop requires about 1,000 iterations
to obtain a reasonable set of results, which leads to acceptable performance when
the loop is pushed down to the triple store layer.

Term search Annotation as well as ‘pre-query’ disambiguation require quick
selection of a resource. We rely on the proven autocompletion technique, which
requires us to quickly find resources related to the prefix of a label or a word
inside a label, organise the results (e.g. organise cities by country) and provide
sufficient context (e.g. date of birth and death of a person). Often results can be
limited to a sub-hierarchy of a thesaurus, expressed as an extra constraint using
the transitive skos:broader property. Although the exact technique differs, the
technical requirements to realise this type of search is similar to the keyword
search described above.

Literal matching Similar to document retrieval, we start our search from a
rated list of literals that contain words with the same stem as the searched
keyword. Unlike document retrieval systems such as Swoogle [7] or Sindice [8],
we are not primarily interested in which RDF documents contain the matching
literals, but which semantically related target concepts are connected to them.
Note that term search (Sect. 3) requires finding literals from the prefix of a
contained word that is sufficiently fast to be usable in autocompletion interfaces
(see also [9]).

Thesaurus-based search in large heterogeneous collections 7

1. Find literals that contain the same stem as the keywords, rate them on minimal
edit distance (short literal) or frequency (long literal) and sort them on the rating
to form the initial agenda

2. Until satisfied or empty agenda, do
(a) Take highest ranked value from agenda as O. Find rdf(S,P,O) terms. Rank

the found S on the ranking of O, depending on P . If P is a subProperty of
owl:sameAs, the ranking of S is the same as O. If S is already in the result
set, combine their values using R = 1 − ((1 − R1) × (1 − R2)). If S is new,
insert it into agenda, else reschedule it in the agenda.

(b) If S is a target, add it to the targets. Note that we must consider rdf(O,IP,S)
if there is an inverseOf(P,IP) or P is symmetric.

3. Prune resulting graph from branches that do not end in a target.
4. Smush resources linked by owl:sameAs, keeping the most linked resource.
5. Cluster the results

(a) Abstract all properties to their VRA or SKOS root property (if possible).
(b) Abstract resources to their class, except for instances of skos:Concept and the

top-10 ranked instances.
(c) Place all triples in the abstract graph. Form (RDF) Bags of resources that

match to an abstracted resource and use the lowest common ancestor for mul-
tiple properties linking two bags of resources.

6. Complete the nodes in the graph with label information for proper presentation.

Fig. 3. Best first graph search and clustering algorithm

Using SPARQL If possible, we would like our search software to connect to an
arbitrary SPARQL endpoint. Considering the fixed query approach, each pattern
is naturally mapped onto a SPARQL graph pattern. Unconstrained graph search
is easily expressed too. Expressed as a construct query, the query engine can
return a minimal graph without duplicate paths.

Unfortunately, both approaches proved to be infeasible implementation
strategies. The best-first graph exploration requires one (trivial) SPARQL query
to find the neighbours of the next node in the agenda for each iteration to update
the agenda and to decide on the next node to explore. Latency and volume of
data transfer make this infeasible when using a remote triple store.

The reasoning for clustering based on the property hierarchy cannot be ex-
pressed in SPARQL, but given the size and stability of the property hierarchy
we can transfer the entire hierarchy to the client and use local reasoning. Af-
ter obtaining the clustered results, the results need to be enriched with domain
specific key information (title and creator) before they can be presented to the
user. Requesting the same information from a large collection of resources can
be realised using a rather inelegant query as illustrated below.

SELECT ?l1 ?l2 ...

WHERE { { ulan:artists1 rdfs:label ?l1 } UNION

{ ulan:artists2 rdfs:label ?l2 } UNION

...

8 Wielemaker and Hildebrand

Regular expression literal matching cannot support match on stem. Prefix and
case insensitive search for contained word can be expressed. Ignoring diacritic
marks during matching as generally needed for multi-script matching is not
supported by the SPARQL regular expression syntax.

We conclude that remote access is inadequate for adaptive graph exploration
and SPARQL is incapable of expressing lowest common parent problems and
relevant literal operations and impractical for enriching computed result sets.

Summary of requirements for search

– Obtain rated list of literals from stem and prefix of contained words.
– Entailment over owl:inverseOf and owl:SymmetricProperty.
– Entailment over owl:TransitiveProperty to limit the domain of term search.
– Entailment over owl:sameAs for term search.
– Graph exploration requires tight connection to the triple store.
– Reasoning with types as well as the class, concept and property hierarchy.

This includes finding the lowest common parent of a set of resources.

4 The ClioPatria search and annotation toolkit

We have realised the functionality described in the previous section on top of the
SWI-Prolog9 web and semantic web libraries [10, 11]. This platform provides a
scalable in-core RDF triple store [12] and a multi-threaded HTTP server library.
ClioPatria10 is the name of the reusable core of the E-culture demonstrator, the
architecture of which is illustrated in Fig. 4. First, we summarise some of the
main features of ClioPatria.

Prolog C

RDF-DB

OWLRDFS

Reasoning

HTTP Server

SeRQL/SPARQL

Browser
(HTML+CSS, AJAX, YUI Widgets)

HTTP

Client

ClioPatria

SWI-Prolog
&

(Semantic) Web
libraries

API
Comp 1 Comp N

Comp I

Application 1

.......

Programs

JSON/XML

HTML,CSS,Javascript

Fig. 4. Overall architecture of the ClioPatria server

9 http://www.swi-prolog.org
10 Open source from http://e-culture.multimedian.nl/software.html

Thesaurus-based search in large heterogeneous collections 9

– Running on a Intel core duo X6800@2.93GHz, 8GB, 64-bit Linux it takes
120 seconds elapsed time to load the 20 million triples. The server requires
4.3Gb memory for 20 million triples (2.3Gb in 32-bit mode). Time and space
requirements grow practically linear in the amount of triples.

– The store provides safe persistency and maintenance of provenance and
change history based on a (documented) proprietary file format.

– Deleting and modifying triples complicates maintenance of the pre-computed
entailment. Therefore, reasoning is as much as possible based on backward
chaining, which fits with Prolog’s search resolution.

4.1 Client-server architecture

In contrast to client-only architectures such as Simile’s Exhibit [13], ClioPatria
has a client-server architecture. The core functionality is provided as HTTP APIs
by the server. The results are served as presentation neutral data objects using
the JSON11 serialization and can thus be combined with different presentation
and interaction strategies. Within ClioPatria, the APIs are used by its web
applications. In addition, the APIs can be used by third party applications to
create mashups. The ClioPatria toolkit contains web applications for search and
annotation. The end-user applications are a combination of server side generated
HTML and client side JavaScript interface widgets.

In the MultimediaN E-Culture demonstrator12 ClioPatria’s web application
for search and annotation are used. The K-Space European Network of Excel-
lence is using ClioPatria to search news13. At the time of writing Europeana14 is
setting up ClioPatria as a demonstrator to provide multilingual access to a large
collection of very divers cultural heritage data. The ClioPatria API provided by
the E-Culture Project is also used by the CATCH/CHIP project Tour Wizard
that won the 3rd prize at the Semantic Web Challenge of 2007. For the semantic
search functionality CHIP uses the web services provided by the ClioPatria API.

4.2 Output formats

Server side we have two types of presentation oriented output routines. Compo-
nents are Prolog grammar rules that define reusable parts of a page. Components
can embed each other. Applications produce an entire HTML page that largely
consists of configured components. Applications automatically add the required
CSS and JavaScript based on dependency declarations.

Client side presentation and interaction is built on top of YUI JavaScript
widget library.15 ClioPatria contains widgets for autocompletion, a search result
viewer, a detailed view on a single resource, and widgets for semantic annotation

11 http://www.json.org
12 http://e-culture.multimedian.nl/demo/search
13 http://newsml.cwi.nl/explore/search
14 http://www.europeana.eu/
15 http://developer.yahoo.com/yui/

10 Wielemaker and Hildebrand

fields. The result viewer can visualise data in thumbnail clusters, a geographical
map, Simile Exhibit, Simile Timeline and a Graphviz16 graph visualisation.

4.3 APIs

ClioPatria provides programmatic access to the RDF data through HTTP.
http://e-culture.multimedian.nl/demo/doc/ The query API provides standard-
ized access to the data via the SeRQL and SPARQL. As we have shown in Sect. 3
such a standard query API is not sufficient to provide the intended keyword
search functionality. Therefore, ClioPatria provides an additional search API for
keyword-based access to the RDF data. In addition, ClioPatria provides APIs to
get resource-specific information, update the triple store and cache media items.
This paper only discusses the query and search API in more detail.

Query API The SeRQL/SPARQL library provides a semantic web query in-
terface that is compatible to Sesame [14] and provides open and standardised
access to the RDF data stored in ClioPatria. Both SeRQL and SPARQL are
translated into a Prolog query that relies on the rdf(S,P,O) predicate provided
by the RDF store and on auxiliary predicates that realise functions and filters
defined by SeRQL and SPARQL. Conjunctions of rdf/3 statements and filter
expressions are optimised through reordering based on statistical information
provided by the store [15].

Search API The search API provides services for graph search (Fig. 3) and
term search (Sect. 3). Both services return their result as a JSON object (us-
ing the serialisation for SPARQL select queries [16]). Both services can be
configured with several parameters. General search API parameters are:

– query(string | URI): the search query.
– filter(false | Filter): constrains the results to match a combination of Fil-

ter primitives, typically OWL class descriptions that limit the results to
instances that satisfy these descriptions. Additional syntax restricts results
to resources used as values of properties of instances of a specific class.

– groupBy(false | path | Property): if path, cluster results by the abstracted
path linking query to target. If a property is given, group the result by the
value on the given property.

– sort(path length | score | Property): Sort the results on path-length, se-
mantic distance or the value of Property.

– info(false | PropertyList): augment the result with the given properties and
their values. Examples are skos:prefLabel, foaf:depicts and dc:creator.

– view(thumbnail | map | timeline | graph | exhibit): shorthands for specific
property lists of info.

– sameas(Boolean): smushes equivalent resources, as defined by owl:sameAs or
skos:exactMatch into a single resource.

16 http://www.graphviz.org/

Thesaurus-based search in large heterogeneous collections 11

Consider the use case discussed in Sect. 2. Clustered results that are seman-
tically related to keyword “picasso” can be retrieved through the graph search
API with this HTTP request:
/api/search?query=picasso&filter=vra:Work&groupBy=path&view=thumbnail

Parameters specific to the graph search API are:

– abstract(Boolean): enables the abstraction of the graph search paths over
rdfs:subClassOf and rdfs:subPropertyOf, reducing the number of clusters.

– bagify(Boolean): puts (abstracted) resources of the same class with the same
(abstracted) relations to the rest of the graph in an RDF bag. I.e. convert a
set of triples linking a painter over various sub properties of dc:creator to
multiple instances of vra:Work, into an RDF bag of works and a single triple
linking the painter as dc:creator to this bag.

– steps(Integer): limits graph exploration to expand less than Integer nodes.
– threshold(0.0..1.0): cuts off the graph exploration on semantic distance.

For annotation we can use the term search API to suggest terms for a partic-
ular annotation field. For example, suppose a user has typed the prefix “pari” in
a location annotation field that only allows European locations. We can request
matching suggestions by using the URI below, filtering the results to resources
that can be reached from tgn:Europe using skos:broader transitively:
/api/autocomplete?query=pari&match=prefix&sort=rdfs:label&

filter={"reachable":{"relation":"skos:broader","value":"tgn:Europe"}}

Parameters specific to the term search API are:

– match(prefix | stem | exact): defines how the syntactic matching of literals
is performed. Autocompletion, for example, requires prefix match.

– property(Property, 0.0..1.0): is a list of RDF property-score pairs which
define the values that are used for literal matching. The score indicates pref-
erence of the used literal in case a URI is found by multiple labels. Typically
preferred labels are chosen before alternative labels.

– preferred(skos:inScheme, URI): if URIs are smushed the information of the
URI from the preferred thesaurus is used for augmentation and organisation.

– compound(Boolean): if true, filter results to those where the query matches
the information returned by the info parameter. For example, a compound
query paris, texas can be matched in two parts against a) the label of the
place Paris and b) the label of the state in which Paris is located.

5 Discussion and conclusion

In this paper we analysed the requirements for searching in large, heterogeneous
collections with rich, but formally ill-defined semantics. We presented the ClioPa-
tria software architecture we used to explore this topic. Three characteristics of
ClioPatria have proved to be a frequent source of discussion: the non-standard
API, the central in-core triple store model and the lack of full OWL DL support.

12 Wielemaker and Hildebrand

API standardisation First, ClioPatria’s architecture is based on various
client-side JavaScript Web applications around a server-side Prolog-based rea-
soning engine and triple store. As discussed in this paper, the server functionality
required by the Web clients extends that of an off-the-shelf SPARQL endpoint.
This makes it hard for Semantic Web developers of other projects to deploy our
Web applications on top of their own SPARQL-based triple stores. We acknowl-
edge the need for standardized APIs in this area. We hope that the requirements
discussed in this paper provide a good starting point to develop the next gen-
eration Semantic Web APIs that go beyond the traditional database-like query
functionality currently supported by SPARQL.

Central, in-core storage model From a data-storage perspective, the cur-
rent ClioPatria architecture assumes images and other annotated resources to
reside on the Web. All metadata being searched, however, is assumed to reside
in-core in a central, server-side triple store. We are currently using this setup
with a 20M triples dataset, and are confident our current approach will easily
scale up to 150M triples on modern hardware (32Gb core). Our central in-core
model will not scale, however, to the multi-billion triple sets supported by other
state-of-the-art triple stores. For future work, we are planning to investigate to
what extent we can move to disk-based or, given the distributed nature of the
organisations in our domain, distributed storage strategies without giving up
the key search functionalities of our current implementation. Distribution of the
entire RDF graph is non-trivial. For example, in the keyword search, the paths
in the RDF graph from the matching literals to the target resources tend to be
unpredictable, varying highly with the types of the resources associated with the
matching literals and the type of the target resources. Implementing a fast, semi-
random graph walk in a distributed fashion will likely be a significant challenge.
As another example, interface components such as a Web-based autocomple-
tion Widget are based on the assumption that a client Web-application may
request autocompletion suggestions from a single server, with response times in
the 200ms range. Realizing sufficiently fast responses from this server without
the server having a local index of all literals that are potential suggestion candi-
dates will also be challenging. Distributing carefully selected parts of the RDF
graph, however, could be a more promising option. In our current datasets for
example, the subgraphs with geographical information are both huge and con-
nected to the rest of the graph in a limited and predictable fashion. Shipping
such graphs to dedicated servers might be doable with only minor modifications
to the search algorithms performed by the main server.

Lack of OWL reasoning From a reasoning perspective, ClioPatria does not
provide traditional OWL DL support. First of all, the heterogeneous and open
nature of our metadata repositories ensures that even when the individual data
files loaded are in OWL DL, their combination will most likely not be. Typical
DL violations in this domain are properties being used as a data property with
name strings in one collection, and as an object property with URIs pointing to
a biographical thesaurus such as ULAN in the other; or rdfs:label properties
being used as an annotation property in the schema of one collection and as a

Thesaurus-based search in large heterogeneous collections 13

data property on the instances of another collection. We believe that OWL DL
is a powerful and expressive subset of OWL for closed domains where all data
is controlled by a single organisation. It has proved, however, to be unrealistic
to use OWL DL for our open, heterogenous Semantic Web application where
multiple organisations can independently contribute to the data set.

Secondly, our application requirements require the triple store to be able to
flexibly turn on and off certain types of OWL reasoning on a per-query basis. For
example, there are multiple URIs in our dataset, from different data sources, rep-
resenting the Dutch painter Rembrandt van Rijn. Ideally, our vocabulary map-
ping tools have detected this and have all these URIs mapped to one another
using owl:sameAs. For an end-user interested in viewing all information available
on Rembrandt, it is likely beneficial to have the system perform owl:sameAs rea-
soning and present all information related to Rembrandt in a single interface,
smushing all different URIs onto one. However, an expert end-user annotating
an artwork being painted by Rembrandt will, when selecting the corresponding
entry from a biographical thesaurus, be interested into which vocabulary source
the URI of the selected concept is pointing, and will also be interested in the
other vocabularies define entries about Rembrandt, and how the different entries
differ. This requires the system to largely ignore the traditional owl:sameAs se-
mantics, present all triples associated with the different URIs separately, along
with the associated provenance information. This type of ad-hoc turning on and
off of specific OWL reasoning is not supported by most off-the-shelf SPARQL
endpoints, but crucial in all realistic multi-thesauri semantic web applications.

Thirdly, we found that our application requirements seldomly rely on exten-
sive subsumption or other typical OWL reasoning. In the weighted graph ex-
ploration we basically only consider the graph structure and ignore most of the
underlying semantics, with only a few notable exceptions. Results are improved
by assigning equivalence relations such as owl:sameAs and skos:exactMatch the
highest weight of 1.0. We search the graph in only one direction, the excep-
tion being properties being declared as an owl:SymmetricProperty. In case of
properties having an owl:inverseOf, we traverse the graph as we would have if
all “virtual” inverse triples were materialised. Finally, we use a simple form of
subsumption reasoning over the property and class hierarchy when presenting
results to abstract from the many small differences in the schemas underlying
the different search results.

Conclusion Our conclusion is that knowledge rich domains such as cultural
heritage fit well with Semantic Web technology. This is because of a) the clear
practical needs this domain has for integrating information from heterogeneous
sources, and b) its long tradition with semantic annotations using controlled
vocabularies and thesauri. We strongly feel that studying the real application
needs of users working in such domains in terms of their search and reasoning
requirements will move ahead the state of the art in Semantic Web research
significantly.

14 Wielemaker and Hildebrand

References

1. Hyvönen, E., Junnila, M., Kettula, S., Mäkelä, E., Saarela, S., Salminen, M.,
Syreeni, A., Valo, A., Viljanen, K.: MuseumFinland — Finnish museums on the
semantic web. Journal of Web Semantics 3 (2005) 224–241

2. Tordai, A., Omelayenko, B., Schreiber, G.: Semantic excavation of the city of books.
In: Proc. Semantic Authoring, Annotation and Knowledge Markup Workshop
(SAAKM2007). Volume 314., CEUR-WS (2007) 39–46 http://ceur-ws.org/Vol-314.

3. Miles, A., Becchofer, S.: SKOS simple knowledge organization system refer-
ence. W3C working draft, World-Wide Web Consortium (2008) Latest version:
http://www.w3.org/TR/skos-reference.

4. de Boer, V., van Someren, M., Wielinga, B.J.: A redundancy-based method for
the extraction of relation instances from the web. International Journal of Human-
Computer Studies 65 (2007) 816–831

5. Tummarello, G., Morbidoni, C., Nucci, M.: Enabling Semantic Web communities
with DBin: an overview. In: Proceedings of the Fifth International Semantic Web
Conference ISWC 2006, Athens, GA, USA (2006)

6. Rocha, C., Schwabe, D., de Aragao, M.: A hybrid approach for searching in the
semantic web. In: Proceedings of the 13th International World Wide Web Confer-
ence, New York, NY, USA (2004) 374–383

7. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V.C., , Sachs, J.: Swoogle: A Search and Metadata Engine for the Semantic Web.
In: Proceedings of the Thirteenth ACM Conference on Information and Knowledge
Management, Washington, D.C., USA (2004) 652–659

8. Tummarello, G., Oren, E., Delbru, R.: Sindice.com: Weaving the open linked
data. In: Proceedings of the 6th International Semantic Web Conference and 2nd
Asian Semantic Web Conference (ISWC/ASWC2007), Busan, South Korea, Berlin,
Heidelberg (2007) 547–560

9. Bast, H., Weber, I.: The CompleteSearch Engine: Interactive, Efficient, and to-
wards IR&DB Integration. In: CIDR 2007, Third Biennial Conference on Innova-
tive Data Systems Research, Asilomar, CA, USA (2007) 88–95

10. Wielemaker, J., Huang, Z., van der Meij, L.: SWI-Prolog and the web. Theory
and Practice of Logic Programming 8 (2008) 363–392 Accepted for publication.

11. Wielemaker, J., Hildebrand, M., van Ossenbruggen, J.: Using Prolog as the funda-
ment for applications on the semantic web. In S. Heymans et al, ed.: Proceedings
of ALPSWS2007. (2007) 84–98

12. Wielemaker, J., Schreiber, G., Wielinga, B.: Prolog-based infrastructure for RDF:
performance and scalability. In Fensel, D., Sycara, K., Mylopoulos, J., eds.: The
Semantic Web - Proceedings ISWC’03, Sanibel Island, Florida, Berlin, Germany,
Springer Verlag (2003) 644–658 LNCS 2870.

13. Huynh, D., Karger, D., Miller, R.: Exhibit: Lightweight structured data publishing.
In: 16th International World Wide Web Conference, Banff, Alberta, Canada, ACM
(2007)

14. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture
for storing and querying rdf and rdf schema. In Horrocks, I., Hendler, J., eds.:
Proceedings ISWC’02. Number 2342 in LNCS, Springer Verlag (2002) 54–68

15. Wielemaker, J.: An optimised semantic web query language implementation in
prolog. In Baggrielli, M., Gupta, G., eds.: ICLP 2005, Berlin, Germany, Springer
Verlag (2005) 128–142 LNCS 3668.

16. Clark, K.G., Feigenbaum, L., Torres, E.: Serializing sparql query results in json
(2007) W3C Working Group Note 18 June 2007.

