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Abstract. Triple20 is a ontology manipulation and visualization tool
for languages built on top of the Semantic-Web RDF triple model. In
this article we explain how a triple-centered design compares to the use
of a separate proprietary internal data model. We show how to deal
with the problems of such a low-level data model and show that it offers
advantages when dealing with inconsistent or incomplete data as well as
for integrating tools.

1 Introduction

Triples are at the very heart of the Semantic Web [1]. RDF, and languages built
on top of it such as OWL [2] are considered exchange languages: they allow ex-
changing knowledge between agents (and humans) on the Semantic Web through
their atomic data model and well-defined semantics. The agents themselves often
employ a data model that follows the design, task and history of the software.
The advantages of a proprietary internal data model are explained in detail by
Noy et al. [3] in the context of the Protégé design.

The main advantage of a proprietary internal data model is that it is neutral
to external developments. Noy et al. [3] state that this enabled their team to
quickly adopt Protégé to the Semantic Web as RDF became a standard. How-
ever, this assumes that all tool components commit to the internal data model
and that this model is sufficiently flexible to accommodate new external devel-
opments. The RDF triple model and the higher level Semantic Web languages
have two attractive properties. Firstly, the triple model is generic enough to
represent anything. Secondly, the languages on top of it gradually increase the
semantic commitment and are extensible to accommodate to almost any domain.
Our hypothesis is that a tool infrastructure using the triple data model at its
core can profit from the shared understanding when using the triple model for
exchange. We also claim that, where the layering of Semantic Web languages
provide different levels of understanding of the same document, the same will
apply for tools operating on the triple model.
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In this article we describe the design of Triple20, an ontology editor that runs
directly on a triple representation. First we introduce our triple store, followed
by a description on how the model-view-controller design can be extended to
deal with the low level data model. In Sect. 4.1 to Sect. 6.2 we illustrate some
of the Triple20 design decisions and functions, followed by some metrics, related
work and discussion.

2 Core technology: Triples in Prolog

The core of our technology is Prolog-based. The triple-store is a memory-based
extension to Prolog realising a compact and highly efficient implementation of
rdf/3 [4]. Higher level primitives are defined on top of this using Prolog backward
chaining rather than transformation of data structures. A simple example:

class(Sub, Super) :-

rdf(Sub, rdfs:subClassOf, Super),

rdf(Sub, rdf:type, rdfs:’Class’),

rdf(Super, rdf:type, rdfs:’Class’).

The RDF infrastructure is part of the Open Source SWI-Prolog system3 and
used by many internal and external projects. Higher-order properties can be
expressed easily and efficiently in terms of triples. Object manipulations, such
as defining a class are also easily expressed in terms of adding and/or deleting
triples. Operating on the same triple store, triples not only form a mechanism
for exchange of data, but also for cooperation between tools. Semantic Web
standards ensure consistent interpretation of the triples by independent tools.

3 Design Principles

Most tool infrastructures define a data model that is inspired by the tasks that
have to be performed by the tool. For example, Protégé, defines a flexible meta-
data format for expressing the basic entities managed by Protégé: classes, slots,
etc. The GUI often follows the model-view-controller (MVC) architecture [5].
This design is illustrated in Fig. 1. There are some issues with this design we
would like to highlight.

– All components in the tool set must conform to the same proprietary data
model. This may harm maintainability and complicates integrating tools
designed in another environment.

– Data is translated from/to external (file-)formats while loading/saving
project data. This poses problems if the external format contains information
that cannot be represented by the tool’s data model.
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Fig. 1. Model-View-Controller (MVC) design pattern. Controllers modify UI aspects of
a view such as zooming, selection, etc. directly. During editing the controller modifies
the model that in turn informs the views. Typically, the data structures of the Model
are designed with the task of the application in mind.

The MVC design pattern is commonly used and successful. In the context of
the Semantic Web, there is an alternative to the proprietary tool data model pro-
vided by the stable RDF triple model. This model was designed as an exchange
model, but the very same features that make it good for exchange also make it a
good candidate for the internal tool data model. In particular, the atomic nature
of the model with its standardised semantics ensure the cooperating tools have
a sound basis.

In addition to providing a sound basis, the triple approach deals with some
serious consistency problems related to more high-level data models. All Seman-
tic Web data can be expressed precisely and without loss of information by the
toolset, while each individual tool can deal with the data using its own way to
view the world. For example, it allows an RDFS tool to work flawlessly with
an OWL tool, although with limited understanding of the OWL semantics. Dif-
ferent tools can use different subsets of the triple set, possibly doing different
types of reasoning. The overall semantics of the triple set however is dictated by
stable standards and the atomic nature should minimise interoperability prob-
lems. Considering editing and browsing tools, different tools use different levels
of abstractions, viewing the plain triples, viewing an RDF graph, viewing an
RDFS frame-like representation or an OWL/DL view (Fig. 4, Fig. 5).

Finally, the minimalist data model simplifies general tool operations such as
undo, save/load, client/server interaction protocols, etc.

In the following architecture section, we show how we deal with the low-level
data model in the MVC architecture.

3 http://www.swi-prolog.org
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4 Architecture

Using a high-level data model that is inspired by the tasks performed by the tools,
mapping actions to changes in the data model and mapping these changes back
to the UI is relatively straightforward. Using the primitive RDF triple model,
mapping changes to the triple store to the views becomes much harder for two
reasons. First of all, it is difficult to define concise and efficiently which changes
affect a particular view and second, often considerable reasoning is involved
deducing the visual changes from the triples. For example, adding the triple
below to a SKOS-based [6] thesaurus turns the triple set representing a thesaurus
into a RDFS class hierarchy:4

skos:narrower rdfs:subPropertyOf rdfs:subClassOf .

The widgets providing the ‘view’ have to be consistent with the data. As we
can see from the above the relation between changes to the triple set and changes
to the view can be very indirect. We deal with this problem using transactions
and mediators [7].

Both for journalling, undo management, exception handling and maintaining
the consistency of views, we introduced transactions. A transaction is a sequence
of elementary changes to the triple-base: add, delete and update,5 labeled with an
identifier and optional comments. The comments are used as a human-readable
description of the operation (e.g. “Created class Wine”). Transactions can be
nested. User interaction with a controller causes a transaction to be started,
operations to be performed in the triple-store and finally the transaction to be
committed. If anything unexpected happens during the transaction, the changes
are discarded, providing protection against partial and inconsistent changes by
malfunctioning controllers. A successful transaction results in an event.

Simple widgets whose representation depends on one or more direct prop-
erties of a resource (e.g., a label showing an icon and label-text for a resource)
register themselves as simple representation of this resource. They will be in-
formed if the resource appears in the subject or object of an affected triple or
the rdfs:subPropertyOf hierarchy is modified in the committed transaction.
In most cases this will cause the widget to do a simple refresh.

Complex widgets, such as a hierarchical view, cannot use this schema as they
cannot easily define the changes in the database that will affect them and re-
computing and refreshing the widget is too expensive for interactive use. It is
here that we introduce mediators. A mediator is an arbitrary (Prolog Herbrandt-
)term that is derived from the triple set through a defined function. For example,
the term can be an ordered list of resources that appear as children of a par-
ticular node in the hierarchy which is computed using an OWL reasoner. Wid-
gets register a mediator whenever real-time update is considered too expensive.
4 Whether this interpretation is correct is not the issue here.
5 The update change can of course be represented as a delete-and-add, but a separate

primitive is more natural, requires less space in the journal and is easier to interpret
while maintaining the view consistency.
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Fig. 2. Introducing mediators to bridge the level of abstraction between triples and
view. Update is performed in a different thread to avoid locking the UI.

The function and its parameters are registered with the updater. The updater
is running in a separate thread of execution, updating all mediators after each
successfully committed transaction. If a mediator is different from the previous
result, the controllers that registered the mediator are notified and will update
using the high-level representation provided by the model term. This approach
has several advantages.

– The UI remains responsive while updating the mediators.
– Updates can be aborted as soon as a new transaction is committed.
– Multiple widgets depending on the same mediator require only one compu-

tation.
– The updater can schedule on the basis of execution time measured last time,

frequency of different results and relation of dependent widgets to the ‘cur-
rent’ widget.6

– One or multiple update threads can exploit multi-cpu (SMP) hardware as
well as schedule updates over multiple threads to ensure likely and cheap
updates are not blocked for a long time by unlikely expensive updates.

4.1 Rules to define the GUI

The interface is composed of a hierarchy of widgets, most of them representing
one or more resources. We have compound and primitive widgets. Each widget
is responsible for maintaining a consistent view of the triple set as outlined in
6 This has not yet been implemented in the current version.
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the previous section. Triple20 widgets have small granularity. For example, most
resources are represented by an icon and a textual label. This is represented as
a compound widget which controls the icons and displays a primitive widget for
the textual label.

In the conventional OO interface each compound widgets decides which mem-
ber widgets it creates and what their their configuration should be, thus gen-
erating the widget hierarchy starting at the outermost widget, i.e. the toplevel
window. We have modified this model by having context-sensitive rule sets that
are called by widgets to decide on visual aspects as well as define context sen-
sitive menus and perform actions. Rule sets are associated with widget classes.
Rules are evaluated similar to OO methods, but following the part-of hierarchy
of the interface rather than the subclass hierarchy. Once a rule is found, it may
decide to wrap rules of the same name defined on containing widgets similar to
sending messages to a superclass in traditional OO (Fig. 3).

The advantage of this approach is that widget behaviour can inherit from its
containers as well as from the widget class hierarchy. For example, a compound
widget representing a set can offer a delete menu-item as well as the method to
handle deletion to contained widgets without any knowledge of these widgets.

Another example is shown in Fig. 3. In this context, Triple20 is used to view
the results of transforming a XML Schema into RDF. XSD types are created
as subclasses of xsd:Type, a subclass of rdfs:Class.7 Normally, Triple20 does
not show the instances of meta-classes in the hierarchy. As most schemas do not
contain that many types and most types are not defined as a subtype of another
type, expanding all XSD types as instances of the class is useful. The code
fragment refines the rule for child cache/3, a rule which defines the mediator
for generating the children of a node in the hierarchy window (Fig. 5). The
display argument says the rule is defined at the level of display, the outermost
object in the widget part-of hierarchy and therefore acts as a default for the entire
interface. The part argument simply identifies the new rule set. The first rule
says the mediator for expanding a xsd:Type node is the set of resources linked
to it using V rdf:type R, sorted by label name (lsorted(V)). The second rule
simply calls the default behaviour.

Rule sets are translated into ordinary Prolog modules using the Prolog pre-
processor.8 They can specify behaviour that is context sensitive. Simple refine-
ment can be achieved loading rules without defining new widgets. More compli-
cated customization is achieved by defining new widgets, often as a refinement
of existing ones, and modify the rules used by a particular compound widget to
create its parts.

7 That is, schema types are considered classes in a hierarchy of types.
8 Realised using term expansion/2.
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:- begin_rules(display, part).

child_cache(R, Cache, rdf_node) :-

rdfs_subclass_of(R, xsd:’Type’),

rdf_cache(lsorted(V), rdf_has(V, rdf:type, R), Cache).

child_cache(R, Cache, Class) :-

super::child_cache(R, Cache, Class).

:- end_rules.

Fig. 3. Redefining the hierarchy expansion for xsd:Type. This rule set can be loaded
without changing anything to the tool.

5 User-interface principles

RDF documents can be viewed at different levels. Our tool is not a tool to
support a particular language such as OWL, but to examine and edit arbitrary
RDF documents. It provides several views, each highlighting a particular aspect:

Fig. 4. Triple20 graph diagram. Resources are shown using just their label or as a
frame. Values or properties can be dragged from a frame to the window to expand
them.

– The diagram view (Fig. 4) provides a graph of resources. Resources can be
shown as a label (Noun) or expanded to a frame (cycle). Elements from the
frame can be dragged to the diagram as natural user-controlled mechanism
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to expand the graph. This tool simply navigates the RDF graph and works
on any RDF document.

– The hierarchy view (Fig. 5, left window) shows different hierarchies (class,
property, individuals) in a single view. The type of expansion is indicated
using icons. Expansion can be controlled using rules as explained in Sect. 4.1.

– A tabular window (Fig. 5, right window) allows for multiple resource specific
representations. The base system provides an instance view and a class view
on resources.

Fig. 5. Triple20 main window after a search and select.

Editing and browsing are as much as possible integrated in the same interface.
This implies that most widgets building the graphical representation of the data
are sensitive. Visual feedback of activation and details of the activated resource
are provided. In general both menus and drag-and-drop are provided. Context-
specific rules define the possible operations dropping one resource on another.
Left-drop executes the default operation indicated in the status bar, while right-
drop opens a menu for selecting the operation after the drop. For example, the
default for dropping a resource from one place in a hierarchy on another node
is to move the resource. A right-drop will also offer the option to associate an
additional parent. Rules also provide context-sensitive menus on resources.

Drag-and-drop can generally be used to add or modify properties. Before
one can drop an object it is required to be available on the screen. This is
often impractical and therefore many widgets provide menus to modify or add
a value. This interface allows for typing the value using completion, selecting
from a hierarchy as well as search followed by selection. An example is shown in
Fig. 6.
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Fig. 6. Select a resource by typing, in this example server. The style indicates the status
and is updated after each keystroke. Green (here) means there are multiple resources
with this name. Hitting the binocular icon shows all matches in the hierarchy, allowing
the user to select.
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6 Implementation

6.1 The source of triples

Our RDF store is actually a quadruple store. The first three fields represent the
RDF triple, while the last identifies the source or sub-graph it is related too. The
source is maintained to be able to handle triples from multiple sources in one
application, modify them and save the correct triples to the correct destination.

Triple20 includes a library of background ontologies, such as RDFS and OWL
as well as some well-known public toplevel ontologies. When a document is loaded
which references to one of these ontologies, the corresponding ontology is loaded
and flagged ‘read-only’, meaning no new triples will be assigned to this source
and it is not allowed to delete triples that are associated to it. This implies that
trying to delete such a triple inside a transaction causes the operation to be
aborted and the other operations inside the transaction to be discarded.

Other documents are initially flagged ‘read-write’ and new triples are associ-
ated to sources based on rules. Actions involving a dialog window normally allow
the user to examine and override the system’s choice, as illustrated in Fig. 7.

Fig. 7. Create a new class. The system proposes the file the class will be saved to as
well as the namespace based on the properties of the super class. Both can be changed.

Although referring to other documents should be the dominant technique
for reusing material on the Semantic Web, Triple20 allows for moving triples
from one source to another realising reuse through copy, possibly followed by
adjustment to the new context.

6.2 Projects

As an ontology editor, Triple20 is designed to operate in two modes. For sim-
ple browsing and minor editing of relatively small projects it can simply open
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(load) a RDF document. It will automatically load referenced documents from
its library, providing access to the document in its context. The ontology can be
edited and saved similar to editing text documents with a word processor.

The above does not scale very well. It requires the relatively slow load and
save from RDF/XML serialization and does not preserve specific settings of
the editor related to the document, such as namespace abbreviations (e.g., rdfs
for http://www.w3.org/2000/01/rdf-schema#), loading of related documents
from locations outside the library, etc. For this reason, Triple20 provides projects.
A project is simply a journal of all actions that can be reloaded by replaying
it. Operations of committed transactions are simply appended to the project
file. For documents that are loaded we save a snapshot with MD5 signature in
the internal quick-load format, providing reliable and fast loading of the same
triple set. The project approach has several advantages for dealing with the
development of large documents.

– There is no need for saving intermediate ‘safety’ copies.
– The commented sequence of transactions allow for reviewing the changes,

both for the author as a change log and for a reviewer that has to authorize
changes for a central copy. We intend to add a mode for ontology mainte-
nance, where each finished transaction will be annotated using the author,
data and a motivation by the author.

7 Scalability

The aim of Triple20 and the underlying RDF store is to support large ontologies
in memory. In-memory storage is much faster than what can be achieved using
a persistent store [4], a requirement to deal with the low-level reasoning at the
triple level. The maximum capacity of the triple store is approximately 40 million
triples on 32-bit hardware and virtually unlimited on 64-bit hardware.

We summarise some figures handling WordNet [8] in RDF. The measure-
ments are taken on a dual AMD 1600+ machine with 2GB memory running
SuSE Linux. The 5 WordNet files contain a total of 473,626 triples. The results
are shown in Tab. 7. For the last test, a small file is added that defines the
wns:hyponymOf property as a sub property of rdfs:subClassOf and defines
wns:LexicalConcept as a subclass of rdfs:Class. This reinterprets the Word-
Net hierarchy as an RDFS class hierarchy. Note that this work is done by the
separate update thread recomputing the mediators and thus does not block the
UI.

8 Related work

Protégé [9] is a landmark in the world of ontology editors. We have described
how our design differs in Sect. 3. Where Protégé is primarily designed as an ed-
itor, Triple20 is primarily a browser. To avoid cluttering the view with controls,
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Operation Time (sec)

Load from RDF/XML 65.4
Load from cache 8.4
Re-interpret as class hierarchy 16.3

Table 1. Some figures handling WordNet on a dual AMD 1600+ machine. Loading
time is proportional to the size of the data.

Triple20’s widgets concentrate on popup menus, drag-and-drop and direct ma-
nipulation techniques. Protégé has dedicated support for ontology engineering,
which Triple20 lacks.

OntoPlugin [10] is the plugin system of OntoEdit. The integration is not
targeted at the data level, but at the tool level, dealing with integration of init,
exit, menu options, etc. They aim at integrating larger components, making no
commitment on a common data model.

JENA [11] is a Java-based environment for handling RDF data. The empha-
sis in this software lies on the RDF API and on the querying functionality, and
not so much on ontology ontology editing, browsing and manipulation.

Similarly, the Sesame software [12] can be seen as complementary to Triple20,
providing client/server-based access to RDF data repositories. Software for using
our infrastructure and Sesame together is available from the SWI-Prolog web-
site.

KAON [13] is an extensible ontology software environment. The main dif-
ference with Triple20 is that the KAON software is mainly aimed to provide
middleware; the environment focuses on integrating distributed applications.

In [14], Miklós et al. describe how they reuse large ontologies by defining views
using an F-logic based mapping. In a way our mediators, mapping the complex
large triple store in a manageable structure using Prolog can be compared to this,
although their purpose is to map one ontology into another, while our purpose
is to create a manageable structure suitable for driving the visualisation.

9 Discussion

We believe the main weakness in our infrastructure is Prolog’s poor support for
declarative inferencing. We identify the following problems. Firstly, bad order-
ing in conjunctions may lead to poor performance. In another project9 we have
found that dynamic reordering is feasible and efficient. Secondly, frequent re-
computation as well as commonly occurring loops in RDF graphs result in poor
performance and complicated code to avoid loops. We plan to add tabling to
SWI-Prolog to improve on this, in a similar way as tabling is realised in XSB
Prolog [15].

9 http://www.swi-prolog.org/packages/SeRQL/
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We plan to study the possibility of adding external (DL) reasoners to the
infrastructure. The can be handled elegantly as another type of mediator, con-
nected through the SWI-Prolog XDIG [16] interface. We are afraid though that
the communication overhead will be unacceptable for large triple stores.

We have realised a tool architecture that is based directly on the RDF triple
model. The advantage of this approach over the use of a tool oriented interme-
diate model is that any Semantic Web document can be represented precisely
and tools operating on the data can profit from established RDF-based stan-
dards on the same grounds as RDF supports exchange between applications.
With Triple20, we have demonstrated that this design can realise good scalabil-
ity, providing multiple consistent views (triples, graph, OWL) on the same triple
store. Triple20 has been used successfully as a stand-alone ontology editor, as a
component in other applications and as a debugging tool for other applications
running on top of the Prolog triple store.

Software availability

Triple20 is available under Open Source (LGPL) license from the SWI-Prolog
website.10 SWI-Prolog with graphics runs on MS-Windows, MacOS X and al-
most all Unix/Linux versions, supporting both 32- and 64-bit hardware.
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