
Real 2.0: User’s Guide

Integrative statistics with R

Nicos Angelopoulos

Stoics.org.uk, London, UK

http://stoics.org.uk/~nicos

Vitor Costa Santos

CRACS-INESC Porto LA, Universidade do Porto, Porto, Portugal

http://www.dcc.fc.up.pt/~vsc/

September 4, 2016

Contents

1 Introduction 1

1.1 Installation . 1

2 Interface 3

2.1 Access predicates . 3
2.1.1 Fast and furious . 5

2.2 Data representation in R . 6
2.3 Vectors, pairlists and matrices . 8
2.4 Translation of R expressions . 9

3 Syntax 10

3.1 Syntactic issues . 10
3.1.1 Component inspection . 12

3.2 Operators . 14
3.3 Associated predicates . 14

References 17

1

Abstract

Real is a Prolog library for integrative statistics with the R software. Due to R’s
functional programming affinity the interface introduced has a minimalistic feel.
Programs utilising the library syntax are elegant and succinct with intuitive se-
mantics and clear integration. In effect, the library enhances logic programming
with the ability to tap into the vast wealth of statistical and probabilistic rea-
soning available in R. The software is a useful addition to the efforts towards the
integration of statistical reasoning and knowledge representation within an AI
context. Furthermore it can be used to open up new application areas for logic
programming and AI techniques such as bioinformatics, computational biology,
text mining, psychology and neuro sciences, where R has particularly strong
presence.

Chapter 1

Introduction

Real is a minimalistic yet powerful Prolog library that provides access to all
aspects of the R (R Development Core Team, 2012) statistical environment.

This document is currently incomplete, the primary reference for Real (ver-
sions 2 and later) is (Angelopoulos, Abdallah, & Giamas, 2016), for earlier
versions see (Angelopoulos et al., 2013).

In this document we primarily use examples from examples/for real.pl.
The user is strongly advised to look into this file for example code.

1.1 Installation

Real was originally designed, developed and tested on YAP 6.3.1 (Costa, Rocha,
& Damas, 2012) under the Linux operating system. It has also been compiled
for, and known to be working on MS operating systems and Mac OS. It was later
ported (Wielemaker & Angelopoulos, 2012) to the SWI (Wielemaker, Schrijvers,
Triska, & Lager, 2012) engine via a complete re-write of the C code. This has
become the main development code as YAP provides a comprehensive compat-
ibility layer to SWI ’s C interface (Wielemaker & Costa, 2011).

Since version 1.4 (2014 onwards) Real has been developed on SWI and in par-
ticularly was a driving force for the extension introduced in SWI 7 (Wielemakers,
2014) and takes full advantage of the new syntax to provide a even tighter syn-
tactic integration of R code in Prolog.

The library and examples presented here can be downloaded from our web-
site (http://stoics.org.uk/~nicos/sware/real/),

To install and use the current stable version in SWI-Prolog simply do:

?- pack_install(real).

?- [library(real)].

Current versions of Yap Prolog include the library (although not necessarily
the latest Real release). When using a downloaded binary, the library can be
loaded as any other system library.

1

?- [library(real)].

To install from sources one needs to specify the --with-R configure option.
This also works if replacing the supplied Yap directory packages/realwith the
new sources directory.

2

Chapter 2

Interface

Real enables the communication between the Prolog system and R. The R
environment is loaded as an operating system library: from the Prolog point of
view, R is just another set of functions; from the R point of view, Prolog is the
top-level. The user interface is designed to satisfy the following requirements:

• Minimality: ideally, most interactions should be performed through a
small number of predicates.

• R Flavour: using the interface should be as close as possible to the stan-
dard usage of R. It should feel as if we are writing R code. To do so, most
common R constructs should just work.

• Prolog Flavour: the interface should not require the user program to con-
struct a sequence of characters to be interpreted by R. Instead, it should
be about Prolog terms that are constructed and manipulated by Prolog
code.

Arguably, the two last goals are incompatible, given the conceptual and
syntactic differences between Prolog and R. Real tries to be as close to R as
possible, but respecting the observation that ultimately one has to construct a
valid Prolog program.

The library leaves the management of R variables to the programmer. On
backtracking there is no removal of variables from the R environment. In prac-
tice, this is rarely a limitation, particularly since R variables can be destructively
assigned new values. In our experience, the strengths of Prolog search through
solutions spaces, merge well with a sequential application of R functions that
can provide deterministic statistical computations.

2.1 Access predicates

The R language uses <- as one of its two assignment operators. In order to be as
close to possible to R syntax, Real uses <-/1 and <-/2 to channel the bulk of the

3

interactions between the two systems. The predicate names are defined as prefix
and infix operators, respectively. The <-/1 predicate sends an R expression,
represented as a ground Prolog term, to R, without getting any results back
to Prolog. The <-/2 operator facilitates bi-directional communication. If the
left-hand side is a free variable, the library assumes that we are passing data
from R to Prolog. If the left-hand side is bound, Real assumes that we are
passing data or function calls to R.
The library implements two communication mechanisms:

• arbitrary R expressions of function calls which possibly embed data items
within their arguments, are parsed from Prolog terms to strings and passed
to R for native parsing.

• specific Prolog terms map to R data objects and efficiently passed between
Prolog and R via their respective C language interface.

More concretely, there are 4 distinct calling modes for <-/2:

+Rexpr < − +PLdata (M1)
+Rexpr < − +Rexpr (M2)
-PLvar < − +Rexpr (M3)

with

PLvar a free Prolog variable

PLdata a Prolog term that can be interpreted as data

Rexpr a Prolog term that will be translated to an R expression

The modes are inferred from the supplied arguments. On the RHS, lists and
c/n terms are interpreted as Prolog data while anything else, is assumed an R
expression. On the LHS a free variable (PLvar) will be instantiated with the
data from R (the RHS expression). A non variable LHS is translated as a term
holding an R expression to which the RHS will be assigned to.

Examples:

% mode M_1

?- x <- c(1,2,3).

?- <- x. % prints x from within R

[1] 1 2 3

?- y <- [1,2,3].

?- <- y.

[1] 1 2 3

% mode M_2

4

?- z <- x + y.

?- <- z.

[1] 3 4 5

% mode M_3

?- X <- x.

X = [1, 2, 3].

?- T <- x + z.

T = [4, 6, 8].

The R expression in the LHS is not constrained, but for the call to be
executed successful it should be an assignable expression. For instance:

?- a <- [1,2,3].

?- a[2] <- 4.

?- <- a

[1] 1 4 3

a negative example follows:

?- x <- 1, y <- 2.

?- x + y <- 2 + 3.

Error in x + y <- 2 + 3 : could not find function "+<-"

Note that it is entirely possible to use <-/2 in the following mode,

-PLvar < − +PLdata

but this is not particularly useful:

?- X <- [1,2,3].

X = [1, 2, 3].

2.1.1 Fast and furious

Modes M1 and M3 are about transferring data between Prolog and R efficiently
via the respective C language interfaces. In these modes Real transfers data
between the two systems by creating appropriate data structures and populating
them via C code.

5

Basic Prolog data types along with lists and c/n compound terms are con-
sidered to be Prolog data (PLdata, above), while free variables are to be in-
stantiated by data from R. In combination, these distinguish the data transfer
modes. All items within Prolog lists are considered to be data, whereas c/n
terms are interpreted as data if and only if they contain basic data items in all
their arguments that can be cast to a single data type. Otherwise they are con-
sidered as R expressions. The expression mode, M2, assigns the result of an R
function call to an R object. Real provides a convenient syntax of R expressions
as term structures. In M2 the expressions are translated to R syntax and then
passed to R (see Section 2.4).

In the following example of mode M1, a list of 6 Prolog integers is passed to
the R variable v and then their average value is passed to Prolog variable Avg.

?- v <- [0,1,1,2,3,5],

Avg <- mean(v).

Avg = 2.0.

2.2 Data representation in R

R recognises several types of objects:

• Floating point numbers, integers, Boolean and ascii values (character
strings) provide the base types.

• Vectors are the main forms of serialised compound objects.

• Arrays are multi-dimensional compound objects with two dimensional ar-
rays treated as special arrays called matrices.

• R supports pairlists, which represent lists pairing a name to value.

• Within compound objects the : operator is supported for ranges, and
NULL objects represent uninitialised R objects.

• Programs can be constructed by using symbols, functions or closures, and
environments.

Regarding base types, there are matches between floating point and integers
in R and Prolog. Boolean values can be matched to true and false atoms.
Character strings are traditionally represented by Prolog as lists of character
codes, however as of SWI-7 the default semantics are that text in double quotes
are intepreted as native strings. In R character strings are of type character
(here abbreviated to char). The full list of supported translations with data are
summarised by the following rules:

Prolog --- R

integer <-> integer

6

float <-> double

atom <-> string

string (SWI-7) <-> string

true/false <-> logical

Within R expressions the following differences are seen:

atom <-> R object

+ atom -> string

The file in sources location examples/for\ real.pl contains a number of
instructional examples. We show here a couple of introductory examples and
some that highlight the differences in translations within Prolog data and R
expressions.

?- a <- [abc,def].

?- <- a.

[1] "abc" "def"

?- a <- ["abc","def"].

?- <- a.

[1] "abc" "def"

?- t <- paste("abc", "def").

?- <- t.

[1] "abc def"

?- t <- paste(abc, def).

Error in paste(abc, def) : object ’abc’ not found

ERROR: R was unable to digest your statement, either syntax or existance error.

?- b <- [true,false,true,true].

?- <- b.

[1] TRUE FALSE TRUE TRUE

There are two facts worth noting regarding translation from Prolog to R.
Firstly, if there are expressions that prove difficult to express as Prolog terms,
the user can always wrap the the expression in single quotes and use R syntax.
So, the following two statements are equivelant but the second passes the R
expression as an atom

?- x <- as.integer(c(1,2,3)).

?- x <- ’as.integer(c(1,2,3))’.

The second point is that the user can inspect the generated R expression
that is passed to R with debug(real).

7

?- debug(real).

?- x <- ’as.integer(c(1,2,3))’.

% Sending to R: x <- as.integer(c(1,2,3))

The main compound types supported by the interface are symbols, pairlists
vectors and matrices. Symbols are R identifiers used for variable and func-
tion names. They naturally map to Prolog atoms and they are contextually
distinguished from chars. Compound objects are described in detail next.

2.3 Vectors, pairlists and matrices

Vectors are a key generic data type in R. It is important to make two observa-
tions on the nature of vectors in R. First, that R vectors are typed and second
that they have attributes. R has six basic vector types: logical, integer, real,
complex, string (or character) and raw. As an example, the R variable v, defined
by

?- v <- as.integer(c(1,2,3)).

is a vector of type integer and its contents are the values 1, 2 and 3. Note that
c() is a generic method in R. The default function of this method is to combine
its arguments into a vector. A vector naturally translates to a list in Prolog. So
passing back the R vector, instantiates the response variable to the list of the 3
numbers.

?- V <- v.

V = [1, 2, 3].

Multi-dimensional arrays are mapped to lists of lists. This principle works
both ways: Prolog lists are mapped to vectors, and lists of lists to matrices
(which are 2 dimensional arrays in R parlance).

An example of passing a list of the integers between 1 and 100 to an R
variable (i), printing the first ten elements through R and then passing the
vector back to Prolog after adding 1 to each number follows:

?- findall(I, between(1,100,I), Is),

i <- Is,

<- i^[1:10], % prints via R

Js <- as.integer(i+1).

[1] 1 2 3 4 5 6 7 8 9 10

Is = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],

Js = [2, 3, 4, 5, 6, 7, 8, 9, 10|...].

Other data types in R include expressions and functions.

8

2.4 Translation of R expressions

Prolog terms representing arbitrary R expressions are parsed and placed into
strings that are subsequently passed from Prolog to R for native parsing and
evaluation. For instance, in the following example the c() combinator function
is used to combine 5 values into an R vector before printing it and then pasting
all vector elements to a single value vector (s). For illustration purposes we also
include a goal that combines the two function calls (assignment to R variable
t).

?- state <- c(+"tas",+"sa",+"qld",+"nsw"),

<- state,

s <-paste(state,collapse=+"+"),

t <-paste(c("tas","sa","qld","nsw"),collapse="+"),

<- s,

<- t.

[1] "tas" "sa" "qld" "nsw"

[1] "tas+sa+qld+nsw"

[1] "tas+sa+qld+nsw"

The implementation of Real recognises that the expression to be assigned to R
variable t is not a single Prolog data term but a number of R function calls, so
it transforms this expression into a string containing an R expression.

Passing long objects through the expression mechanism is both inefficient
and can easily lead to buffer limitations as it is only intended as a mechanism
for passing function calls on existing R objects. Real circumvents both these
limitations by automatically detecting Prolog lists and c() terms and passing
them via a hidden R variable which is then substituted in the call passed for
evaluation to R. The temporary name of the hidden variable is selected so as
not to clash with the current R name-space.

For instance, the following code generates a list of 50, 000 elements and com-
putes the mean of its elements via a call to R through the expression mechanism.
Without the use of hidden variables this call would generate a resource error
and even shorter lists would take much longer to transfer. The example code
that follows was executed on SWI-Prolog 6.3.0 on a Linux 11.10 desktop having
a dual core 3.16 GHz processor.

?- findall(I, between(1,50000,I), Is),

time(A <- mean(Is)).

% 181 inferences,0.002 CPU in 0.002 seconds

(100% CPU,75597 Lips)

Is = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],

A = 25000.5.

In the above calls, A <- mean(Is) becomes t <- Is, A <- mean(t).

9

Chapter 3

Syntax

3.1 Syntactic issues

There is valid R syntax which results in non-parsable Prolog code. Notably
function and variable names are allowed to contain dots, square brackets are
used to access parts of vectors and arrays, and functions are allowed empty
argument tuples. We have introduced syntax which allows for easy translation
between Prolog and R. Prolog constructs are converted by the library as follows:

• R code often uses the ‘.’ symbol with function and variable names. As
this syntax conflicts with standard Prolog usage, Real allows the use of
the operator ‘..’, e.g.:

as..integer(c(1,2)) => as.integer(c(1,2))

The library’s original name (r..eal) was a word play on the ‘..’ opera-
tor. However, as of SWI-7 there is no need for the double period as the
following

as.integer(c(1,2))

is now recognised syntax.

• R allows matrix subscripts. In the style of BProlog (Zhou, 2012), Real
uses the ‘^’ operator. Recent changes in Prolog syntax mean that the
usual subscript notation is now valid Prolog syntax. Both the following
are valid:

a^[2] => a[2]

a[2] => a[2]

• R allows ranges over subscripts, say a[,,2] which in R is a way of to refer
to all the values of the first and second dimension of a. Real uses * for
this purpose:

10

a^[*,*,2] => a[,,2]

Note that Real follows R conventions to access arrays.

• We map the ‘$’ R operator to a Prolog library operator (op(400,yfx,$)).
In R, $ is one of the possible ways in which parts of vectors, matrices,
arrays and lists can be extracted or replaced 3.1.1. In most contexts
there is no ambiguity so the operator can be used freely, however in some
situations it might be necessary to quote.

a$val => a$val or ’a$val’ => a$val

• Real used (.) to denote R functions with zero arity, however recent
changes in Prolog syntax mean that we can do away with the dot. So
both of the following are now valid,

dev..off(.) => dev.off()

dev..off() => dev.off()

• The R NULL value is coded as the empty list.

• Simple R functions can be coded by using the Prolog implication operator
‘:-’:

(f(x) :- (...)) => f(x) (...)

This is only advised for very small functions, and does not support con-
ditionals yet.

• As mentioned previously, lists of lists are converted to matrices. In con-
trast to the flexibility of R, all levels of the lists must have the same
length.

• Prolog represents character strings as lists of integers. It is thus impossible
to distinguish strings from genuine lists of integers appearing in arbitrary
R expressions. We define ‘+’ as a prefix operator to identify strings.

source(+"String") => source("String")

and

source(+’Atom’) => source(+"Atom")

With SWI-7 douple quotes are a new type (strings) which can be inter-
preted directly to R’s strings

• Some R operators cannot be represented by valid Prolog terms, so we
introduced some mnemonic mappings (see Section 3.2 below):

a ’%*%’ b => a %*% b

11

Real R Description
a[x] a[x] index access
a[∗, 3] a[, 3] missing array index
mod %% modulo
// %\% integer division
@ ∗@ % ∗% matrix multiplication
@ˆ@ % o% outer product of arrays
@in@ % ∼ % set/list membership
! = \ = not equal operator

Table 3.1: Syntax translations between R and Real.

• the interface enables mapping of NA values within arithmetic vectors
and matrices to $NaN . When passing numeric data from Prolog to R
in addition to $NaN , the empty atom (‘’) is also translated to R’s NA
value.

• With recent versions of SWI users have access to infinty values. There
are propagated preperly between the two systems

?- r <- 1 / 0.

?- <- r.

[1] Inf

?- R <- r.

R = 1.0Inf.

?- R <- r, t <- R.

R = 1.0Inf.

?- <- t.

[1] Inf

The majority of R operators can be used unquoted as they are defined as infix
operators and present no issues. Finally, expressions that Real cannot translate
can always be passed as Prolog atoms or strings. (Wielemaker & Angelopoulos,
2012) discuss some of these issues. Table 3.1 shows the correspondance of op-
erators that need intepretation from Prolog to R as the R form is illegal Prolog
syntax.

3.1.1 Component inspection

R’s pairlists provide named and indexed access to their elements. ^[[]] can be
used to identify the ith or named element, and ‘$’ for the named element.

12

?- a <- [x=1,y=0,z=3],

<- a,

A <- a[[1]],

B <- a[["y"]],

C <- a$z,

D <- a[[+y]].

$x

[1] 1

$y

[1] 0

$z

[1] 3

A = 1,

B = D, D = 0,

C = 3.

R’s S4 objects, (Becker, Chambers, & Wilks, 1988), comprise slots which
can be accessed with the ‘@’ operator.

<- setClass(+"track", representation(x=+"numeric", y=+"numeric")),

myTrack <- new(+"track", x = -4:4, y = exp(-4:4)),

<- print(myTrack@x),

Y <- myTrack@y,

write(y(Y)), nl,

<- setClass(+"nest", representation(z=+"numeric", t=+"track")),

myNest <- new(+"nest", z=c(1,2,3)),

myNest@t <- myTrack,

myNest@t@x <- Y+1, % good ex. for hidden vars.

<- myNest.

[1] -4 -3 -2 -1 0 1 2 3 4

y([0.01831563888873418,0.049787068367863944,0.1353352832366127,...])

An object of class "nest"

Slot "z":

[1] 1 2 3

Slot "t":

An object of class "track"

Slot "x":

[1] 1.018316 1.049787 1.135335 1.367879 2.000000 3.71...

[8] 21.085537 55.598150

13

op. prec. assoc. comment

access
<- 950 fx R expressions
<- 950 yfx bi-directional R link
<<- 950 yfx

component/slot extraction
@ 400 yfx slot extraction (from formal object)
$ 400 yfx component extraction (vectors, matrices, arrays and lists)

arithmetic

~ 600 xfy
@*@ 400 yfx
@o@ 400 yfx
@˜@ 400 yfx

Table 3.2: Operators defined in Real.

Slot "y":

[1] 0.01831564 0.04978707 0.13533528 0.36787944 1.0000...

[7] 7.38905610 20.08553692 54.59815003

Y = [0.01831563888873418, 0.049787068367863944, 0.135...]

3.2 Operators

Real defines a number of operators, which are show in Table 3.2. From the R
help pages (http://stat.ethz.ch/R-manual/R-devel/library/base/html/
Syntax.html) @ and $ “require names or string constants on the right hand
side” so we define them as yfx and translate the RHS as identifier.

3.3 Associated predicates

Real was developed as academic open source software. It is therefore appreciated
if you cite the papers related to Real when you publish work in which it played
a beneficial role. To find relevant citations:

?- once(r_citation(Cit, bibtex(Type,Key,Entries))),

write(Cit), nl, nl, member(E, Entries), write(E), nl,

fail.

14

Advances in integrative statistics for logic programming

Nicos Angelopoulos, Samer Abdallah and Georgios Giamas

International Journal of Approximate Reasoning,

http://dx.doi.org/10.1016/j.ijar.2016.06.008.

author=Nicos Angelopoulos, Samer Abdallah and Georgios Giamas

title=Advances in integrative statistics for logic programming

journal=Journal of Approximate Reasoning

year=2016

month=July

url=http://dx.doi.org/10.1016/j.ijar.2016.06.008

The current version and publication date can be found in r version/3. The
arguments hold the release number (Mj:Mn:Fx), the release date (date/3) and
a codename or brief release note (atom).

?- r_version(A, B, C).

A = 2:0:0,

B = date(2016, 8, 24),

C = ijar.

To debug the system and spy on the traffic between Prolog and R we use the
debug SWI library (also available on YAP). The current support is not complete
but can be instructive when the user gets unexpected behaviour. Cebugging is
enabled and disabled as per normal debug/1 use:

off debugging/informational messages.

?- debug(real) .

?- nodebug(real).

Acknowledgements

We owe many thanks to Jan Wielemaker for re-drafting the whole of the C code
in a single afternoon and evening. (Exclusive of dinner time at his local restau-
rant.) Also for tidy-ups to version 2.0 which were derived from his work in
adjusting Real for Rserve. Thanks also to Samer Abdallah for work on the
integration with web-services.

15

Index

+/1, 11
ˆ/2, 12
$/2, 12
<-/1, 4
<-/2, 4

debug(real), 15

nodebug(real), 15

r citation/2, 14
r version/3, 15

16

References

Angelopoulos, N., Abdallah, S., & Giamas, G. (2016, July). Advances in inte-
grative statistics for logic programming. International Journal of Approx-
imate Reasoning. doi: http://dx.doi.org/10.1016/j.ijar.2016.06.008

Angelopoulos, N., Costa, V. S., Azevedo, J., Wielemaker, J., Camacho, R., &
Wessels, L. (2013, Jan.). Integrative functional statistics in logic program-
ming. In Proc. of Practical Aspects of Declarative Languages (Vol. 7752,
p. 190-205). Rome, Italy.

Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The new S lan-
guage: A programming environment for data analysis and graphics. USA:
Wadsworth & Brooks/Cole.

Costa, V. S., Rocha, R., & Damas, L. (2012). The YAP Prolog system. Journal
of Theory and Practice of Logic Programming, 12 , 5-34.

R Development Core Team. (2012). R: A language and environment for
statistical computing [Computer software manual]. Vienna, Austria.
(http://www.R-project.org/)

Wielemaker, J., & Angelopoulos, N. (2012, September). Syntactic integration of
external languages in Prolog. In ICLP workshop on logic-based methods in
programming environments (WLPE’12) (p. 40-50). Budapest, Hungary.

Wielemaker, J., & Costa, V. S. (2011). On the portability of Prolog applications.
In Practical Aspects of Declarative Languages (PADL’11) (p. 69-83).

Wielemaker, J., Schrijvers, T., Triska, M., & Lager, T. (2012). SWI-Prolog.
Theory and Practice of Logic Programming, 12 (1-2), 67–96.

Wielemakers, J. (2014, July). SWI-Prolog version 7 extensions. In ICLP work-
shop on logic-based methods in programming environments (WLPE’14).

Zhou, N.-F. (2012, January). The language features and architecture of B-
Prolog. Theory and Practice of Logic Programming, 12 , 189-218.

17

